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Abstract. These notes are a typed version of Professor Burger’s lec-
ture notes, whereby some explanations and proofs were added.
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Chapter 1. Banach Spaces, bounded linear Maps: first properties
and examples

1.1. Normed Spaces, Banach Spaces, Examples

In this course all vector spaces will be over the field K where K = R,C.
These are normed fields where

• for x ∈ R, |x| := max(x,−x)
• for z = x+ iy ∈ C, |z| =

√
x2 + y2

Now, let V be a K-vector space.

Definition 1.1. A norm on V is a map V ! R, v 7! ∥v∥ satisfying
(1) ∥v∥ ⩾ 0 for all v ∈ V and ∥v∥ = 0 iff v = 0
(2) ∥v + w∥ ⩽ ∥v∥+ ∥w∥ for all v, w ∈ V
(3) ∥αv∥ = |α|∥v∥ for all α ∈ K and v ∈ V

Definition 1.2. A normed space is a K-vector space together with a norm
∥ · ∥; it is often denoted by (V, ∥ · ∥).

Define d(v, w) := ∥v − w∥. Then properties (1) + (2) are equivalent to
the distance axioms (of a metric). In addition:

d(αv, αw) = |α|d(v, w).
Thus a normed space (V, ∥ · ∥) has a natural distance and in particular is a
topological space. By definition of the topology, a basis of open sets is given
by1

{B<r(x) | x ∈ V, r ⩾ 0}.
The K-vector space structure and the topology on V are then compatible

in the following sense:

Lemma 1.3. The maps
(1) K× V ! V, (α, v) 7! αv
(2) V × V ! V , (v1, v2) 7! v1 + v2

are continuous.

Proof. Note that we interpret K × V and V × V to be endowed with the
product topology.

(1) Let ε > 0 and (α, v) ∈ K × V be arbitrary; write p for the function
in (1). Next, we want to find some open U ⊂ K× V s.t. p(U) ⊂ B<ε(αv).
One finds

p(B<δ(α)×B<δ(v)) ⊂ B<δ∥v∥+δ(|α|+δ)(αv) ⊂ B<ε(αv)

for δ suitably small. This holds, since for β ∈ B<δ(0) we have
(α+ β)B<δ(v) = B<δ|α+β|((α+ β)v).

1We will write Br(x) to denote the open ball of radius r centered at x. For closed
balls we will write B⩽r(x).
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(2) Again, for ε > 0 and (v1, v2) ∈ V × V arbitrary and write a for the
function in (2). Then

p(B<δ(v1)×B<δ(v2)) = B<δ(v1) +B<δ(v2) ⊂ B<2δ(v1 + v2)

so choosing 2δ < ε does the job. ■

Later in the course we will have to focus on more general objects than
normed spaces, namely:

Definition 1.4. A topological vector space is a vector space V endowed
with a topology for which the maps (1) + (2) in Lemma 1.3 are continuous.

Clearly all concepts pertaining to the theory of metric spaces make sense
for normed spaces. The most imporant one:

Definition 1.5. A normed space (V, ∥ · ∥) is called a Banach space if the
underlying metric space (V, d) is complete.

And:

Definition 1.6. A normed space is (V, ∥ · ∥) is separable if the underlying
metric space (V, d) is.

We now turn to examples.

Example 1.7. Let V be a K-vector space with an inner product

⟨·, ·⟩ : V × V ! K.

Then ∥x∥ :=
√
⟨x, x⟩ defines a norm on V since

∥x+ y∥2 = ⟨x, x⟩+ 2Re⟨x, y⟩+ ⟨y, y⟩
⩽ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2

using Cauchy-Schwarz. An inner product space (V, ⟨·, ·⟩) is called a Hilbert
space if (V, ∥ · ∥) is complete, that is a Banach space.

Inner product spaces can be characerised among normed spaces as those
whose norm satisfies the parallelogramm law:

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

For an exposition cf. Iacobelli, Analysis 4, section 1.1.

Example 1.8. is a σ-algebra of subsets of Ω called measurable sets and
µ : F ! [0,+∞] is a σ-additive measure. For 1 ⩽ p < +∞ let

Lp(Ω,K) :=

ß
f : Ω ! K measurable | ∥f∥Lp(Ω) :=

∫
Ω
|f(x)|p dµ(x) < +∞

™
/∼

whith f ∼ g if f(x) = g(x) almost everywhere (with respect to the measure
µ). Then ∥ · ∥Lp(Ω) satisfies all properties of a norm. The triangle inequality
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follows from the convexity of x 7! xp when p ⩾ 1 or can also be deduced
using Hölder’s inequality1, which states that for f, g : Ω ! R we have

∥fg∥L1(Ω) ⩽ ∥f∥Lp(Ω)∥g∥Lq(Ω)

with 1 ⩽ p < +∞ and q the corresponding conjugate exponent, i.e.
1

p
+

1

q
= 1.

For p = +∞ one defines
L∞(Ω,K) := {f : X ! K measurable | ∃M > 0: |f(x)| ⩽M a.e.}

with norm
∥f∥L∞(Ω) = inf{M > 0: |f(x)| ⩽M a.e.}.

Special case: If F = 2Ω and µ is the counting measure, the correspond-
ing Lp space is denoted by ℓp(X,K).

Theorem 1.9. Let 1 ⩽ p ⩽ ∞ and (fn)n≥1 a Cauchy-Sequence in Lp(Ω, µ,K).
Then tehre is a susbequence (fnk

)k⩾1 converging almost everywhere to a
measurable function f : Ω ! K. In addition, f ∈ Lp(Ω, µ,K) and

lim
n!∞

∥f − fn∥Lp(Ω) = 0.

The case p = 2 is special as ∥ · ∥L2(Ω) is induced by the inner product

⟨f, g⟩ :=
∫
Ω
f(x)g(x) dx.

Example 1.10. Let X be a topological space and
Cb(X) := {f : X ! R continuous and bounded}.

For f ∈ Cb(X) we let
∥f∥b := sup

x∈X
|f(x)|

which makes is a Banach space (this is readily checked since ∥ · ∥b is the
uniform norm and continuity respectively boundedness are properties which
are preserved by uniform convergence).

1For the proof of this inequality we can exploit the convexity of x 7! ex: First, since
the inequality is multiplicatively symmetric we can assume that ∥f∥Lp(Ω) = ∥g∥Lq(Ω) = 1.
Next, by convexity, for a, b > 0 one has

ab = exp(ln(a) + ln(b))

= exp
( ln(ap)

p
+

ln(bq)

q

)
⩽ exp(ln(ap))

p
+

exp(ln(bq))

q
=

ap

p
+

bq

q
.

Setting a = f, b = g and integrating both sides yields the desired bound of 1.
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Example 1.11. Let α > 0; then Λα(R) is the space of all bounded contin-
uous functions f : R ! R satisfying

sup
x ̸=y

|f(x)− f(y)|
|x− y|α

< +∞.

Then for f ∈ Λα(R)

∥f∥Λα := sup
x∈R

|f(x)|+ sup
x̸=y

|f(x)− f(y)|
|x− y|α

gives rise to a norm on Λα(R) for which it is a Banach space. If α > 1 then
any f ∈ Λα(R) is constant.

Example 1.12. The following family of functions spaces on Rd, called
Sobolov spaces, are fundamental in the study of partial differential equa-
tions. First a definition: a function f ∈ Lp(Rd) (where the underlying mea-
sure is the Lebesgue measure on Rd) is said to have weak derivatives in Lp up
to order k ∈ N if for every (α1, . . . , αd) ∈ Nd with |α| := α1 + · · ·+ αd ⩽ k,
there is some gα ∈ Lp(Rd) with∫

Rd

gα(x)φ(x) dx = (−1)|α|
∫
Rd

f(x)∂αxφ(x) dx

for all φ ∈ C∞
c (Rd). Observe that if f ∈ C∞(Rd) then

gα(x) = ∂αx f(x)

as can be seen by repeated integration by parts. In general, if f ∈ Lp(Rd)
has weak derivatives in Lp up to order k, we write by abuse of terminology,

gα = ∂αx f

and denote by Lpk(Rd) this function space. Then

∥f∥Lp
k(R

d) :=
∑
|α|⩽k

∥∂αx f∥Lp(Rd)

turns Lpk(Rd) into a Banach space. A version of the Sobolov embedding
theorem says that if m > d

2 and f ∈ L2
m(R

d) then f can be corrected on a
set of measure zero to become Ck for k < m− d

2 .

We now turn to properties of finite dimensional normed spaces. The
following concept of equivalence for norms will prove useful.

Definition 1.13. Two norms ∥ · ∥1, ∥ · ∥2 on a vector space V are called
equivalent if there exists some C > 0 s.t.

1

C
∥x∥1 ⩽ ∥x∥2 ⩽ C∥x∥1

for all x ∈ V .

Clearly, if ∥ · ∥1 and ∥ · ∥2 are equivalent norms then (V, ∥ · ∥1) is a Banach
space iff (V, ∥ · ∥2) is.
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Example 1.14. Consider c00(Z), the space of all continuous functions
f : Z ! K having finite support. Then for 1 ⩽ p1, p2 < +∞ the norms
∥ · ∥p1 and ∥ · ∥p2 on c00(Z) are equivalent iff p1 = p2.

For finite dimensional vector spaces we have the following:

Proposition 1.15. On a finite dimensional K-vector space V all norms are
equivalent.

Proof. Since any finite dimensional vector space V is isomorphic to Kd it
suffices to show the result for Kd. Let ∥ · ∥ be any norm on Kd and ∥ · ∥2 the
Euclidean norm. Now, if (e1, . . . , en) be the canonical basis, we have that
for all x =

∑n
k=1 αkek

∥x∥ =

∥∥∥∥ n∑
k=1

αkek

∥∥∥∥ ⩽
n∑
k=1

|αk|∥ek∥

⩽Mn max
1⩽k⩽n

|αk| ⩽Mn

Å n∑
k=1

|αk|2
ã1/2

=Mn∥x∥2

for M = max{∥e1∥, . . . , ∥en∥}.
For the other direction, note that ∥·∥ is a continuous function so it attains

its Minimum on the compact set S := {x ∈ V : ∥x∥2 = 1}, let it be C. Then
for all x ∈ S we have ∥x∥ ⩾ C = C∥x∥2.

Since norm-equivalence is a transitive relation we are done. ■

We can deduce the following fact:

Corollary 1.16. In a normed space, any finite dimensional subspace is
closed.

Proof. Since all norms are equivalent we find that such a subspace is com-
plete and hence closed as a subspace of any normed space. ■

Even if norms are equivalent, their respective unit balls can have very
different geometric properties, e.g. the unit ball with respect to the euclidean
norm is a literal ball, whereas it is a square for the maximum norm (aka
infinity norm).

1.2. Continuous Linear Maps

Having defined the objects of the category of normed spaces, we need the
morphisms. These turn out to be continuous linear maps and admit various
characterisations. In a normed space (V, ∥ · ∥) we say that a subset B ⊂ V
is bounded if there is some 0 ⩽ R < +∞ s.t. B ⊂ B⩽R(0).

Definition 1.17. A linear map T : V ! W between normed spaces (V, ∥ ·
∥V ), (W, ∥·∥W ) is bounded if T (B) is bounded whenever B ⊂ V is bounded.
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Observe that the property for T to be bounded is equivalent to
∥T∥ := sup{∥T (x)∥W : ∥x∥V ⩽ 1, x ∈ V } < +∞

meaning that T (B⩽1(0)) is bounded, whereby ∥T∥ is called the operator
norm.

Theorem 1.18. Let T : V ! W be a linear map of normed spaces V, W .
The following are equivalent:

(1) T is continuous in 0 ∈ V
(2) T is continuous on V
(3) T is bounded
(4) T is Lipschitz continuous with Lipschitz constant ∥T∥.

Proof. (1) =⇒ (2): From Lemma 1.3 we know that for all v ∈ V the map
Lv : V ! V, x 7! x+ v is continuous. The additivity of T can be expressed
by the commutativity of the below diagram

V W

V W

T

T

L−v LT (v)

Thus T = LT (v) ◦ T ◦ L−v. If now T is continuous in 0 this implies that
LT (v) ◦ T ◦ L−v is continuous at 0 and hence , using L−v(v) = 0, T is
continuous at v.

(2) =⇒ (3): Since T is continuous at zero there exists some ε > 0 s.t.
T (BV

⩽ε(0)) ⊂ BW
⩽1(0) so in particular T (BV

⩽1(0)) ⊂ BW
⩽1/ε(0).

(3) =⇒ (4): T being bounded implies the existence of some C ⩾ 0 s.t.
∥T (x)∥W ⩽ C for all x ∈ BV

<1(0). In particular we have ∥T (x)∥W ⩽ C∥x∥V
for arbitrary x and hence

∥T (x)− T (y)∥W = ∥T (x− y)∥W ⩽ C∥x− y∥V
for all x, y ∈ V .

(4) =⇒ (1): This direction is clear. ■
From now on, given normed spaces V and W we will denote

B(V,W ) := {T : V !W : T is linear and bounded}.
Next, let us consider a property of the operator norm, namely submulti-

plicativity.

Proposition 1.19. Let U T−−! V
S−−! W be bounded linear maps between

normed spaces, then ∥S ◦ T∥ ⩽ ∥S∥ · ∥T∥.

Proof. For any x ∈ BU
⩽1(0) we compute

∥S(Tx)∥ ⩽ ∥S∥∥Tx∥ ⩽ ∥S∥∥T∥∥x∥ ⩽ ∥S∥∥T∥
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so taking the supremum over BV
⩽1(0) the result follows. ■

Remark 1.20. This simple observation is quite fundamental as it endows
B(V, V ) with teh structure of a Banach Algebra, which will be topic of
Functional Analysis II.

We observe that if V and W are normed spaces then T 7! ∥T∥ gives rise
to a norm on B(V,W ).
Definition 1.21. B(V,K) is called the dual space of V and denoted V ∗.
Proposition 1.22. If W is a Banach space then B(V,W ) equipped with
the operator norm is a Banach space. In particular for any normed space V
its dual space V ∗ is a Banach space with respect to the operator norm.
Proof. Let (An)n⩾1 be a Cauchy sequence in B(V,W ). Since for any x ∈ V
we have

∥An(x)−Am(x)∥ ⩽ ∥An −Am∥∥x∥
the sequence (An(x))n⩾1 is Cauchy in W and hence converges. This means
the function

A : V !W, x 7! lim
n!∞

An(x)

is well defined. Linearity of A follows from properties of the limit and
linearity of the An; next we show boundedness. One has

∥A(x)∥ = ∥A(x)−An(x) +An(x)∥
⩽ ∥A(x)−An(x)∥+ ∥An(x)∥ ⩽ ∥A(x)−An(x)∥+ ∥An∥∥x∥

whereby the first term goes to zero as n! ∞ and the second term converges
since

|∥An∥ − ∥Am∥| ⩽ ∥An −Am∥
so that ∥A∥ ⩽ limn!∞ ∥An∥. It remains to show that An ! A with respect
to the operator norm (so far we have only established pointwise conver-
gence). By continuity of the norm we find

∥An(x)−A(x)∥ = lim
m!∞

∥An(x)−Am(x)∥ ⩽ lim sup
m!∞

∥An −Am∥∥x∥

so in particular
∥A−An∥ ⩽ lim sup

m!∞
∥An −Am∥

which lets us deduce
lim sup
n!∞

∥An −A∥ ⩽ lim sup
n!∞

lim sup
m!∞

∥An −Am∥ = 0

since (An)n⩾1 is Cauchy, which implies limn!∞ ∥An −A∥ = 0. ■
In certain situations linear maps are automaically continuous.

Proposition 1.23. Let V and W be normed spaces and T : V !W a linear
map. Assume V is finite dimensional, then T is bounded.
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Proof. Since for finite dimensional vector spaces the unit sphere is com-
pact1, we can argue by contradiction. If there existed a sequence (vn)n⩾1 ⊂
BV
<1(0) with ∥Tvn∥W ⩾ n. By compactness there exists a convergent subse-

quence (vnk
)k⩾1 converging to v, contradicting that Tvnk

is unbounded. ■

Before we move to examples of bounded linear maps, we deifne the opera-
tion of adjunction which in a sense generalises the transpoition of a matrix.

Recall that if V is a normed K-vector space, its dual V ∗ is defined as:
V ∗ = B(V,K). Given now A ∈ B(V,W ) a bounded linear map of normed
K-vector spaces, we have that ∀λ ∈W ∗, the composition

λ ◦A : V
A−−!W

λ−−! K

defines an element in V ∗ denotes A∗λ. This way we obtain a linear map

A∗ : W ∗ ! V ∗

called the adjoint of A. Let us show that A∗ is bounded:

|(A∗λ)(x)| = |λ(Ax)| ⩽ ∥λ∥∥A∥∥x∥

which implies

∥A∗λ∥ ⩽ ∥A∥∥λ∥

so taking the supremum over all ∥λ∥ ⩽ 1 we find ∥A∗∥ ⩽ ∥A∥. Later,
we will see that this inequality is in fact an equality, a consequence of the
Hahn-Banach theorem.

Laslty, let us quickly look at the special case of A∗ when the underlying
space is a Hilbert space (i.e. an inner product space that is additionally
complete). Assume H1,H2 are Hilbert spaces; we know that the map

i1 : H1 ! H∗
1, i1(v)(x) = ⟨x, v⟩

is a bijection (Riesz representation theorem). Now, letting T ∈ B(H1,H2)
and T ∗ : H∗

2 ! H∗
1 we define

1By Heinel-Borel we know that {|x| ⩽ 1: x ∈ Rd} ⊂ Rd is compact, being closed and
bounded. If V is now an arbitrary finite dimensional space of dimension d, there exists
an isomorphism Φ: Rd ! V and the function ∥ · ∥Φ : Rd ! R, x 7! ∥Φ(x)∥V defines a
norm on Rd. By norm equivalence we conclude that BRd

<1 (0, ∥ · ∥Φ) is compact. If now
(vn)n⩾1 ⊂ BV

<1(0) then the sequence (Φ−1(vn))n⩾1 ⊂ BRd

<1 (0, ∥ · ∥Φ) has a convergent
subsequence (Φ−1(vnk ))k⩾1 so that by definition of ∥ · ∥Φ the sequence (vnk )k⩾1 converges
w.r.t. ∥ · ∥V .
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H2 H∗
2

H1 H∗
1

T ′

i2

T ∗

i1

i.e. T ′ := i−1
1 ◦ T ∗ ◦ i2. Then T ′ ∈ B(H2,H1) and satisfies

⟨v, T ′w⟩ = i1(T
′w)(v)

= i1((i
−1
1 ◦ T ∗ ◦ i2)(w))(v)

= i1(i
−1
1 ◦ T ∗[h2 7! ⟨h2, w⟩])(v)

= i1(i
−1
1 ([h1 7! ⟨Th1, w⟩]))(v)

= [h1 7! ⟨Th1, w⟩](v) = ⟨Tv,w⟩

In the case of Hilbert spaces we will denote T ′ by T ∗ (by abuse of notation).

Definition 1.24. Let H be a Hilbert space; a bounded linear operator
T : H ! H is called

(a) Self-adjoint if T ∗ = T
(b) Unitary if T ∗T = TT ∗ = idH

Remark 1.25. A unitary operator has in particular has in particular the
property that ∥Tv∥2 = ∥v∥2 for all v ∈ H.

More generally:

Definition 1.26. A bounded operator T : V ! W of normed spaces is an
isometry if

∥Tv∥W = ∥v∥V ∀v ∈ V

Example 1.27 (Multiplicative Operator). Let (Ω,F , µ) be a measure space
and φ ∈ L∞(Ω). Then if f ∈ Lp(Ω) then

|f(x)φ(x)| ⩽ ∥φ∥L∞(Ω)|f(x)|
and hence fφ ∈ Lp(Ω). We deduce that the linear operator

Mφ : L
p(Ω) ! Lp(Ω), f 7! fφ

is bounded with ∥Mφ∥ ⩽ ∥φ∥L∞(Ω). In fact, this inequality can be turned
into an equality: For arbitrary ε > 0 there exists a set Eε of positive measure
s.t.

|φ(x)| ⩾ (1− ε)∥φ∥L∞(Ω).

Now we consider the function fε := 1Eε
1

µ(Eε)1/p
which clearly has unit Lp-

norm and satisfies∫
Ω
|fεφ|p dµ =

1

µ(Eε)

∫
Eε

|φ|p dµ ⩾ (1− ε)p∥φ∥pL∞(Ω).
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Since ε can be made arbitrarily small the desired result follows.
This example is absolutely fundamental: Let V be a finite dimensional R-

inner product space (finite dimensional real Hilbert space) and T : V ! V
a self-adjoint map, n = dim(V ) and X = {1, . . . , n} with µ the counting
measure. Then there exists a Hilbert space isomorphism

V
δ−−! ℓ2(X)

and φ ∈ L∞(X) s.t.
V ℓ2(X)

V ℓ2(X)

T Mφ

δ

δ

commutes. This is a reformulation of the theorem that a real symmetric
matrix admits an orthonormal set of eigenvectors with real eigenvalues.

Example 1.28 (unitary representation). Let Γ be a group which we con-
sider as a measure space with counting measure. In this example ℓ2(Γ) =
ℓ2(Γ,C). For f ∈ ℓ2(Γ) and γ ∈ Γ define

(λ(γ)f)(η) := f(γ−1η).(∗)
Then

⟨λ(γ)f, g⟩ =
∑
η∈Γ

f(γ−1η)g(η) =
∑
η∈Γ

f(η)g(γη) = ⟨f, λ(γ−1)g⟩

from which we deduce
λ(γ)∗ = λ(γ−1).

In addition the definition in (∗) with the inverse of γ is chosen s.t.
λ(γ1γ2)f = [x 7! f((γ1γ2)

−1x)] = [x 7! f(γ−1
2 γ−1

1 x)] = λ(γ1)λ(γ2)f.

In particular:
λ(γ)∗λ(γ) = λ(γ−1)λ(γ) = λ(e) = id

λ(γ)λ(γ)∗ = λ(γ)λ(γ−1) = λ(e) = id

meaning λ : Γ ! U(ℓ2(Γ)) is a homomorphism into the group U(ℓ2(Γ)) of
unitary operators of ℓ2(Γ).

Fact: For γ ∈ Γ, λ(γ) has an eigenvector in ℓ2(Γ) ⇐⇒ γ is of finite
order in Γ.

For the necessary condition, if γ had infinite order and f was an eigenvec-
tor of λ(γ) then there would exist some α ∈ C s.t. λ(γ)f = αf . In particu-
lar, given any η ∈ Γ with1 f(η) ̸= 0 we would have f(γ−1η) = αf(η). This

1Such an η must exist since, by definition of eigenvectors, f has to be nonzero.
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means α ̸= 0 since otherwise f(η) = 0 and iterating the identity we obtain
f(γ−mη) = αmf(η) for any m ∈ Z. However, this contradicts f ∈ ℓ2(Γ).

Next the sufficient condition: We construct an eigenvector f by setting
f(η) = 1 for all η ∈ ⟨γ⟩ and let it be zero for all other group members.
Since for η ̸∈ ⟨γ⟩ we have γ−1η ̸∈ ⟨γ⟩ this is indeed an eigenvector (with
corresponding eigenvalue α = 1) and f ∈ ℓ2(Γ) since

∥f∥2ℓ2(Γ) =
∑
η∈⟨γ⟩

|f(η)|2 = ord(γ) < +∞

Example 1.29 (Integral Operators). Let (Ω,F , µ) be a σ-finite measure
space. This means that Ω is a countable union of measurable sets of finite
measure and hence Fubini’s theorem holds. Let K ∈ L2(Ω× Ω,K) with K
being R or C. Then1∫

Ω×Ω
|K|2 d(µ× µ) =

∫
Ω

∫
Ω
|K(x, y)|2 dµ(x) dµ(y) < +∞

and hence by Fubini’s Theorme we have that for almost every x ∈ Ω∫
Ω
|K(x, y)|2 dµ(y) < +∞

meaning y 7! K(x, y) is in L2(Ω) so that for all f ∈ L2(Ω)

TKf(x) =

∫
Ω
f(y)K(x, y) dµ(y)

is well defined a.e. Writing Kx(y) = K(x, y) we estimate

∥TKf∥2L2(Ω) =

∫
Ω

∣∣〈Kx, f
〉∣∣2 dµ(x)

⩽
∫
Ω
∥Kx∥2L2(Ω)∥f∥

2
L2(Ω) dµ(x) = ∥K∥2L2(Ω)∥f∥

2
L2(Ω)

which shows that TK defines a bounded operator on L2(Ω) with norm
∥Tk∥ ⩽ ∥K∥L2(Ω).

Let us also compute the adjoint of TK :

⟨TKf, g⟩ =
∫
Ω
TKf(x)g(x) dµ(x)

=

∫
Ω

∫
Ω
g(x)f(y)K(x, y) dµ(y) dµ(x)

=

∫
Ω
f(y)

∫
Ω
g(x)K(x, y) dµ(x) dµy = ⟨f, TK∗g⟩

with K∗(x, y) = K(y, x). In particular, TK is self adjoint if and only if
K(x, y) = K(y, x) ∀x, y ∈ Ω

1The equality is due to Tonelli’s theorem
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Chapter 2. Hahn-Banach and consequences
2.1. Hahn-Banach, Analytic Form

Hahn-Banach refers to a set of results that assert the existence of con-
tinuous linear forms with addional properties. Whether hidden or explicit,
convexity plays always a fundemental role. We begin with a very general
result called ”Hahn-Banach, Analytic Form” that concerns R-vector spaces.

Definition 2.1. A gauge1 on a R-vector space V is a funciton p : V ! R
such that

(1) p(αx) = αp(x), ∀α > 0
(2) p(x+ y) ⩽ p(x) + p(y), ∀x, y ∈ V

Remark 2.2. Observe that ∀r ∈ R the sublevels {v ∈ V : p(v) < r} and
{v ∈ V : p(v) ⩽ r} are convex.

Remark 2.3. Let C ⊂ V be a convex set with the property that ∀v ∈
V ∃α > 0 s.t. v ∈ αC. Then

p(v) := inf{α > 0: v ∈ αC}

is a gauge function on V . In addition
{v : p(v) < 1} ⊂ C ⊂ {v : p(v) ⩽ 1}.

Theorem 2.4. Let V be an R-vector space, p : V ! R a gauge, M ⊂ V a
vector subspace and f : M ! R a linear form with f(v) ⩽ p(v) for all v ∈M .
Then there exists a linear extension2 F : V ! R of f with F (v) ⩽ p(v) for
all v ∈ V.

First, some informal explanation why this theorem intuitively ought to
be true: Starting from the given functional f we pick some x0 ∈ V \M and
construct a new functional f̃ : M +Rx0 ! R via

f̃(v + tx0) = f(v) + tα

whereby we will show that there exists an α ∈ R so that f̃ ⩽ p on M+Rx0.
Intuitively we would want to iterate this construction until our functional is
defined on all of V , but this idea already hints that the proof will somehow
involve the Axiom of Choice (or one of its equivalent formulations) since we
would need some kind of transfinite induction. The proof below will not
proceed by transfinite induction, but the idea is still the same.

We will make use of Zorn’s lemma which is a statement about (partially)
ordered sets which we recall now.

Let P be a set with a partial order ⩽. A subset Q ⊂ P is totally ordered
if ∀a, b ∈ Q either a ⩽ b or b ⩽ a. We say that c ∈ P is an upper bound
for a subset Q ⊂ P if a ⩽ c for all a ∈ Q. We say that m ∈ P is maximal

1Also called a sublinear map.
2The term linear extension already encompasses that F |M = f .
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if m ⩽ x =⇒ x = x. Finally we say that P is inductive if every totally
ordered subset Q ⊂ P has an upper bound. The following is the Zorn’s
lemma which is equivalent to the Axiom of Choice:

Lemma 2.5 (Zorn’s Lemma). Let P ̸= ∅ be ordered and inductive. Then
P admits a maximal element.

With this we turn to the proof of Theorem 2.4.

Proof. Let
P = {(h,D) : D ⊂ V is an R-linear subspace

h : D ! R is linear, M ⊂ D,

h|M = f, h(v) ⩽ p(v) ∀v ∈ D}.
We order P in the following way:

(h1, D1) ⩽ (h2, D2) ⇐⇒ D1 ⊂ D2 and h2|D1
= h1.

Clearly P ̸= ∅ since (m, f) ∈ P .
Let us verify the hypothesis of Zorn’s lemma. For any totally ordered

subset Q ⊂ P define

E :=
⋃

(h,D)∈Q

D.

Since Q is totally ordered, E is a R-vector subspace of V . Define j : E ! R
by j|D = h whenever (h,D) ∈ Q. Now one verifies easily that (j, E) ∈ P ;
it is clearly an upper bound for Q. By Zorn’s lemma there is a maximal
element (F,E) ∈ P . All we have to show is that E = V , which we will do
by contradiction.

Suppose E ̸= V and let x0 ∈ V \E and D := E+Rx0. Define h : D ! R
by

h(v + tx0) = F (v) + tα ∀v ∈ E, t ∈ R

whereby α = F (x0) is a constant yet to be determined so that h ⩽ p on D.
We need α ∈ R s.t.

F (v) + tα ⩽ p(v + tx0) ∀v ∈ E, t ∈ R.

Using the homogeneity of p (and linearity of F ), this amounts to the follow-
ing inequalities:

(1) F (x) + α ⩽ p(x+ x0) ∀x ∈ E
(2) F (x)− α ⩽ p(x− x0) ∀x ∈ E.

Combining these we want to show that
sup
y∈E

(F (y)− p(y − x0)) ⩽ inf
x∈E

(p(x+ x0)− F (x))

i.e. that for all x, y ∈ E:
F (y)− p(y − x0) ⩽ p(x+ x0)− F (x)



16

⇐⇒ F (x) + F (y) ⩽ p(x+ x0) + p(y − x0).

Now
F (x) + F (y) = F (x+ y) ⩽ p(x+ y) = p((x+ x0) + (y − x0))

⩽ p(x+ x0) + p(y − x0)

which yields the desired inequality and concludes the proof. ■
The geometric form of Hahn-Banach for real vector spaces will be used in

the theory of topological vector spaces, in particular to establish the Krein-
Milman theorem.

For many applications to dual spaces of normed K-vector spaces, where
K = R,C, the notion of seminorms, a bit more restrictive than a gauge,
will suffice.
Definition 2.6. A seminorm on a K-vector space V is a function p : V !
[0,+∞) s.t.

(1) p(αv) = |α|p(v) ∀α ∈ K, ∀v ∈ V
(2) p(v1 + v2) ⩽ p(v1) + p(v2) ∀v1, v2 ∈ V .

We have the following form of Hahn-Banach valid for K-vector spaces.
Theorem 2.7. Let V be a K-vector space, p : V ! [0,+∞) a seminorm,
M ⊂ V a K-vector subspace and f : M ! K a linear form with |f(v)| ⩽
p(v) for ∀v ∈M . Then there exists a K-linear extension F : V ! K with
|F (v)| ⩽ p(v) for ∀v ∈ V .
Proof. We can assume that K = C since for K = R the theorem holds by
invoking Theorem 2.4, since F (v) ⩽ p(v) and due to absolute homogeneity
we have −F (v) = F (−v) ⩽ p(−v) = p(v).

Now, by writing
f(v) = f1(v) + if2(v) ∀v ∈ V

for f1, f2 : M ! R, we not only see that f1 and f2 are R-linear, but C-
linearity of f also enforces

f1(iv) + if2(iv) = f(iv) = if(v) = if1(v)− f2(v)

meaning f2(v) = −f1(iv). Hence we can solely focus on f1 which satisfies

|f1(v)| ⩽
»
(Re f1(v))2 + (Im f2(v))2 = |f(v)| ⩽ p(v)

so there exists a linear extension F1 : V ! R with
|F1(v)| ⩽ p(v) ∀v ∈ V.

We now set F (v) := F1(v) − iF1(iv) which is indeed C-linear and extends
f (due to our above observation). To estimate |F | we do a little trick: Pick
θ ∈ [0, 2π] so that eiθF (v) = |F (v)|, i.e. we rotate the complex number F (v)
onto the real-axis. This gives us

|F (v)| = eiθF (v) = F (eiθv)
(∗)
= F1(e

iθv) ⩽ p(eiθv) = |eiθ|p(v) = p(v)
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whereby in (∗) we used that F (eiθv) is purely real. ■

We draw some immediate consequences which can loosely be summarised
by saying tha a normed K-vector space has enough continuous linear functi-
noals.

Corollary 2.8. Let (V, ∥·∥) be a normed K-vector space, M ⊂ V a subspace
and f : M ! K continuous linear. Then there is F : V ! K continuous
linear with F |M = f and ∥F∥ = ∥f∥.

Proof. By hypothesis |f(v)| ⩽ ∥f∥∥v∥ for all v ∈ M whereby ∥f∥ is the
operator norm of f constraint to M , i.e.

∥f∥ = sup
x∈M
∥x∥⩽1

∥f(x)∥.

Let p : V ! [0,+∞) be defined by

p(v) := ∥f∥∥v∥.

Then p is a norm, in particular sublinear, so that Theorem 2.7 applies to
obtain a K-linear form F : V ! K with F |M = f and |F (v)| ⩽ p(v) =
∥f∥∥v∥ for all v ∈ V . This implies

∥f∥ = sup
v∈M
∥v∥⩽1

|f(v)| = sup
v∈M
∥v∥⩽1

|F (v)| ⩽ sup
v∈V
∥v∥⩽1

|F (v)| ⩽ ∥f∥

demonstrating ∥F∥ = ∥f∥. ■

Corollary 2.9. Let V be a normed space and v0 ∈ V . Then there is f0 ∈ V ∗

with
(1) ∥f0∥ = 1
(2) f0(x0) = ∥x0∥.

Proof. Let M = Kx0 and f : M ! K, f(tx0) = t∥x0∥. By Corollary 2.8
there exists f0 ∈ V ∗ with f0|M = f , in particular f0(x0) = ∥x0∥ and

∥f0∥ = ∥f∥ = sup
|t|⩽ 1

∥x0∥

|f(tx0)| = 1

■

The next statement is an immediate consequence of 2.9:

Corollary 2.10. Let V be a normed space, then for all v ∈ V :

∥v∥ = sup{|f(v)| : f ∈ V ∗, ∥f∥ ⩽ 1} = max{|f(v)| : f ∈ V ∗, ∥f∥ ⩽ 1}

This corollary allows us now to compute hte norm of hte adjoint T ∗ : W ∗ !
V ∗ of a bounded linear map T : V !W .

Corollary 2.11. We have ∥T ∗∥ = ∥T∥.
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Proof. Plugging in the definitions we compute1

∥T ∗∥ = sup
λ∈W ∗

∥λ∥⩽1

∥T ∗(λ)∥

= sup
∥λ∥⩽1

sup
∥v∥⩽1

|T ∗(λ)(v)|

= sup
∥v∥⩽1

sup
∥λ∥⩽1

|λ(Tv)|

By Corollary 2.10 we have

sup
∥λ∥⩽1

|λ(Tv)| = ∥Tv∥

which together with the above computation implies

∥T ∗∥ = sup
∥v∥⩽1

∥T (v)∥ = ∥T∥.

■

Another application of 2.10 is to the bidual of a normed space V : this
is by definition V ∗∗ = B(V ∗,K) and the point is that we have a canonical
map

J : V ! V ∗∗, J(v)(λ) := λ(v)

Proposition 2.12. The map J : V ! V ∗∗ is a K-linear isometry into the
Banach space V ∗∗.

Proof. First, we have that

|J(v)(λ)| = |λ(v)| ⩽ ∥λ∥∥v∥

which shows that J(v) ∈ (V ∗)∗. Next we have by 2.10:

∥J(v)∥ = sup
∥λ∥⩽1

|λ(v)| = ∥v∥.

■

Spaces for which J is surjective are called reflexive, they are automatically
Banach spaces.

Now we turn to some important examples of dual spaces.

1Suprema are interchangable: Let f : A×B ! R for sets A,B; then

sup
a∈A

sup
b∈B

f(a, b) = sup
b∈B

sup
a∈A

f(a, b).

To see this, note that for any a ∈ A we have

f(a, b) ⩽ sup
a∈A

f(a, b) =⇒ sup
b∈B

f(a, b) ⩽ sup
b∈B

sup
a∈A

f(a, b)

and taking supa∈A on both sides we obtain the first inequality. The other one can be
obtained by applying this argument to b ∈ B.
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Example 2.13 (The dual of Lp(Ω), 1 ⩽ p < +∞). Let 1 ⩽ p < +∞ and q
the conjugate exponent, that is

1

p
+

1

q
= 1.

Then Hölder’s inequality shows that every g ∈ Lq(Ω) gives rise to a contin-
uous linear function on Lp(Ω) by

ℓg(f) :=

∫
Ω
f(x)g(x) dµ(x)

with ∥ℓ∥ ⩽ ∥g∥Lq(Ω).

In fact:

Theorem 2.14. For 1 ⩽ p < +∞ the map

Lq(Ω) ! (Lp(Ω))∗, g 7! ℓg

is an isometric isomorphism.

Proof. Cf. Stein-Shakarchi [SS11], section 1.4. ■

Corollary 2.15. For 1 < p < +∞, Lp(Ω) is reflexive.

We will see later on that for Banach spaces there is a relation between
uniform convexity and reflexivity.

Example 2.16. Let X be a locally compact Hausdorff space. A continuous
function f : X ! R is said to vanish at infinity if for all ε > 0 there exists
some compact set K ⊂ X s.t.

|f(x)| < ε ∀x ∈ X \K.

Let C0(X,C) be the space of continuous C-valued functions that vanish at
+∞. Endowed with the norm

∥f∥b := sup
x∈X

|f(x)|

C0(X) becomes a Banach space.
The dual space C0(X)∗ is described by the space of complex measures: a

complex measure is a set function

µ : BX ! C

defined on the σ-algebra BX of Borel sets s.t. for all E ∈ BX and any
countable partition E =

⊔
n∈NEn with En ∈ BX we have

µ(E) =

∞∑
n=1

µ(En).
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Since this series is assumed to converge for any permutation of the sum-
mands, it converges absolutely. One defines then the total variation measure
of µ as

|µ|(E) = sup

ß ∞∑
n=1

|µ(En)| : E =
⊔
n∈N

En, En ∈ BX
™

and shows that |µ| is a positiv measure on BX with |µ|(X) < +∞.
In order to define the integral of say a bounded Borel function f : X ! C

w.r.t. µ, one reduces oneself to the case of positive measures (where the
Lebesgue integral is available) in the following way. First one can evidently
decompose µ as

µ = µ1 + iµ2

where µ1, µ2 are both complex measures with values in R: such measures
are called signed measures. Given a signed measure ν : BX ! R define then

ν+ =
1

2
(|ν|+ ν)

ν− =
1

2
(|ν| − ν).

Then ν+, ν− are positive measures with ν+(X), ν−(X) < +∞ and ν =
ν+ − ν−. Thus, given a complex measure µ, we can decompose it as follows
into a combination of positive measures:

µ = (µ+1 − µ−1 ) + i(µ+2 − µ−2 )

and hence
∫
Ω f dµ makes sense for say any bounded Borel function. Finally,

we say that µ is regular if its total variation measure |µ| is a regular Borel
measure. Then:

Theorem 2.17. (Riesz Representation) For every bonded linear map Φ: C0(X,C) !
C there is a unique complex regular measure µ defined on Borel sets such
that

Φ(f) =

∫
X
f dµ ∀f ∈ C0(X,C).

In addition ∥Φ∥ = |µ|(X).

2.2. The Problem of Measure

The Hahn-Banach theorem can be used to show that there is a finitely
additive set funciton defined on all subsets of Rd that agrees with Lebesgue
measure on measurable sets and is translation invariant. However, this set
function cannot be σ-additive and this is connected to the existence of non-
measurable sets.

A deeper fact is that it is not possible to extend the Lebesgue measure
on Rd (d ⩾ 3) to a finitely-additive measure on all subsets of Rd so that it
is both translation and rotation invariant.
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Here we are going to treat the case d = 1 which proceeds in two steps,
the first of which contains the main idea based on the use of Hahn-Banach;
the second step, more formal can be read in Stein-Shakarchi (chapter 5.4 of
[SS11]).

Let R/Z be the group of real numbers mod 1, that is, the quotient of
the abelian group R by the subgroup Z and π : R ! R/Z the canonical
projection. Let

C∞(R/Z) = {f : R/Z ! R : f is bounded}.
We say that f ∈ ℓ∞(R/Z) is measurable if f ◦ π : R ! R is L1-measurable
w.r.t. the Lebesgue measure L1 so that L1([0, 1]) = 1. For f ∈ ℓ∞(R/Z)
measurable we define∫

R/Z
f dL1 :=

∫ 1

0
(f ◦ π)(x) dL1(x)

which exists since f ◦ π is bounded and measurable.
Next we have an action of R by translation ℓ∞(R/Z) defined as follows:

observe that for x ∈ R/Z and h ∈ R, x+h ∈ R/Z is well defined. Then for
f ∈ ℓ∞(R/Z), set fh(x) = f(x+ h).

Theorem 2.18. There is a linear map
I : ℓ∞(R/Z) ! R

s.t.
(1) I(f) ⩾ 0 if f ⩾ 0
(2) I(f) =

∫
R/Z f dL

1 whenever f is measurable
(3) I(fh) = I(f) for all h ∈ R and f ∈ ℓ∞(R/Z).

Proof. This is going to be an application of Hahn-Banach (Theorem 2.4)
with V = ℓ∞(R/Z) and M = {f ∈ ℓ∞(R/Z) : f measurable} with the linear
form

I0 : M ! R, I0(f) :=

∫
R/Z

f dL1.

The key now is to find the appropriate gauge function p : V ! R s.t. I0(f) ⩽
p(f) for all f ∈ M . Banach’s ingenious construction goes as follows: For
every pair (A,α) consisting of a finite set A and a function α : A! R define

M(A,α)(f) := sup
x∈R/Z

1

|A|

Å∑
a∈A

f(x+ α(a))

ã
for f ∈ ℓ∞(R/Z) where |A| is the cardinality of A. Define then

p(f) := inf{M(A,α)(f) : A finite, α : A! R}.

Observe that since
−∥f∥∞ ⩽MA,α(f) ⩽ ∥f∥∞,

p(f) is well defined.
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To establish that p is a guage it will be convenient to define for f ∈
ℓ∞(R/Z),

S(f) := sup
x∈R/Z

f(x) ∈ R.

Then S satisfies the following properties:
(1) S(cf) = cS(f) if c ⩾ 0 and f ∈ ℓ∞(R/Z).
(2) S(f1 + f2) ⩽ S(f1) + S(f2) for all f1, f2 ∈ ℓ∞(R/Z)
(3) S(fh) = S(f) for all h ∈ R and f ∈ ℓ∞(R/Z).

It is then convenient to rewrite MA,α(f) as S( 1
|A|

∑
a∈A fα(a)). From this we

deduce
(1) MA,α(cf) = cMA,α(f) for all c ⩾ 0 and f ∈ ℓ∞(R/Z)
(2) MA,α(f1 + f2) ⩽MA,α(f1) +MA,α(f2) for all f1, f2 ∈ ℓ∞(R/Z)
(3) MA,α(fh) =MA,α(f) for all h ∈ R and f ∈ ℓ∞(R/Z).

Property (1) implies immediately that for all c ⩾ 0 and f ∈ ℓ∞(R/Z)

p(cf) = cp(f).

Concerning the second defining property of a gauge we make the following
observation: let (A,α), (B, β) be maps from finite sets to R. Define

α+ β : A×B ! R, (a, b) 7! α(a) + β(b).

Then for all g ∈ ℓ∞(R/Z) we have
(1) MA×B,α+β(g) ⩽MA,α(g)
(2) MA×B,α+β(g) ⩽MB,β(g).

We show (1), as (2) follows from (1) by interchaning the roles of (A,α) and
(B, β). To this end we compute

MA×B,α+β(g) = S

Å
1

|A||B|
∑
a∈A
b∈B

gα(a)+β(b)

ã
= S

Å
1

|B|
∑
b∈B

Å
1

|A|
∑
a∈A

gα(a)

ã
β(b)

ã
⩽ 1

|B|
∑
b∈B

S

ÅÅ
1

|A|
∑
a∈A

gα(a)

ã
β(b)

ã
=

1

|B|
∑
b∈B

S

Å
1

|A|
∑
a∈A

gα(a)

ã
=MA,α(g)

which shows (1).
Let now f1, f2 ∈ ℓ∞(R/Z), ε > 0 and (A,α), (B, β) s.t.

MA,α(f1) < p(f1) + ε

MB,β(f2) < p(f2) + ε.

Then
p(f1 + f2) ⩽MA×B,α+β(f1 + f2)
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⩽MA×B,α+β(f1) +MA×B,α+β(f2)

⩽MA,α(f1) +MB,β(f2)

< p(f1) + ε+ p(f2) + ε

which implies p(f1 + f2) ⩽ p(f1) + p(f2) and shows that p is a gauge.
Next we observe that for all h ∈ R and f ∈ ℓ∞(R/Z) measurable, we

have

I0(f) =
1

|A|

∫
R/Z

∑
a∈A

fα(a) dL1

⩽
∫
R/Z

S

Å
1

|A|
∑
a∈A

fα(a)

ã
dL1 =MA,α(f)

which by taking the infimum over all (A,α) implies I0(f) ⩽ p(f) for all
f ∈M .

Let I : ℓ∞(R/Z) ! R be the linear form extending I0 and satisfying

I(f) ⩽ p(f)

for all f ∈ ℓ∞(RZ) given by Theorem 2.4.
Now we show that I satisfies properties (1), (2) and (3) of Theorem 2.18.

Clearly, if f(x) ⩽ 0 for all x ∈ R/Z then MA,α(f) ⩽ 0 and hence p(f) ⩽ 0.
Thus I(f) ⩽ p(f) ⩽ 0. If now f(x) ⩾ 0 for all x ∈ R/Z we have −f(x) ⩽ 0
for all x ∈ R/Z, hence I(−f) ⩽ 0 and by linearity of I, I(f) ⩾ 0 which
proves (1). Property (2) is immediate since I extends I0. ■

For (3) we claim that p(f − fh) ⩽ 0 for all ℓ∞(R/Z) and h ∈ R. Indeed,
let N ⩾ 1 in N arbitrary, AN = {1, . . . , N} and αN (j) = jN . Then the sum
entering the definition of MAN ,αN

(f) is

1

N

N∑
j=1

(f − fh)(x+ jh) =
1

N

N∑
j=1

(f(x+ jh)− f(x+ (j + 1)h))

=
1

N
(f(x+ h)− f(x+ (N + 1)h)).

And hence
MAN ,αN

(f − fh) ⩽
2∥f∥∞
N

N!∞−−−−! 0

which implies p(f − fh) ⩽ 0. Thus I(f − fh) ⩽ 0. Replacing f by f−h and
then −h by h we get I(fh − f) ⩽ 0 and by linearity I(fh) = I(f) for all
h ∈ R and f ∈ ℓ∞(R/Z).

For E ⊂ R/Z, we say that E is measurable if 1E ∈ ℓ∞(R/Z) is and define
its Lebesgue measure

L1(E) :=

∫
R/Z

1E dL1.

Then we have the follwing immediate corollary from Theorem 2.18.
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Corollary 2.19. There is a non-negative set function λ̂ defined on all sub-
sets of R/Z s.t.

(1) λ̂(E1 ∪ E2) = λ̂(E1) + λ̂(E2) for all disjoint subsets E1, E2

(2) λ̂(E) = L1(E) if E is measurable
(3) λ̂(E + h) = λ̂(E) for all h ∈ R and E ⊂ R/Z.

From this it is not difficult to deduce

Theorem 2.20. There is a function λ̂ : P(R) ! [0,+∞] with the following
properties

(1) λ̂(E1 ∪ E2) = λ̂(E1) + λ̂(E2) whenever E1, E2 are disjoint
(2) λ̂(E) = L1(E) whenever E is Lebesgue measurable.
(3) λ̂(E + h) = λ̂(E) for all h ∈ R and E ⊂ R.

Corollary 2.19 can obviously be rephrased in terms of the existence of a
finitely additive set function on S1 that is SO(2)-invariant measure on S1.

In contrast to the action of SO(3) on S2 one has a paradoxical decompo-
sition as was shown by Banach-Tarski.

Theorem 2.21. There is a countable subset E ⊂ S2, a partition
S2 \ E = A1 ∪A2 ∪A3 ∪A4

and two rotations a, b ∈ SO(3) such that
a(A2) = A2 ∪A3 ∪A4

b(A4) = A1 ∪A2 ∪A4.

Corollary 2.22. There is no SO(3)-invariant additive set function on S2

extending the Lebesgue measure.

Proof. If λ̂ : P(S2) ! [0,∞) were such a set function we would first have
λ̂(E) = 0 since E is countable. Then

λ̂(A2) = λ̂(aA2) = λ̂(A2) + λ̂(A3) + λ̂(A4)

which implies λ̂(A3) = λ̂(A4) = 0 and similarly,
λ̂(A4) = λ̂(bA4) = λ̂(A1) + λ̂(A2) + λ̂(A4)

implying λ̂(A1) = λ̂(A2) = 0. Thus
λ̂(S2) = λ̂(E) + λ̂(A1) + λ̂(A2) + λ̂(A3) + λ̂(A4)

which implies λ̂(E) = 0 for all E ⊂ S2. ■
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Chapter 3. Compact Operators, Spectral Theorem
The main result of this chapter is the spectral theorem for self-adjoint

compact operators on a Hilbert space. In fact many operators arising ” in
nature” are compact, examples will arise in the first section of this chapter,
while the second is devoted to the proof of the spectral theorem.

3.1. Compact operators and Hilbert-Schmidt operators

Certain natural classes of operators between Banach spaces have much
stronger properties than being bounded.

Definition 3.1. A (bounded) operator T : V !W between Banach spaces
is said to be compact if T (B⩽1(0)) is a compact subset of W .

This is equivalent to requiring that T (B) ⊂ W is compact for whenever
B ⊂ V is bounded1.

The fundamental examples is:

Example 3.2. If T : V ! W has finite rank then T is compact. Indeed,
R(T ) := im(T ) is finite dimensional and T (B⩽1(0)) is closed and bounded;
it is compact by Heine-Borel.

Let V,W be Banach spaces and K(V,W ) ⊂ B(V,W ) the subset consisting
of compact operators. Then:

Proposition 3.3. (1) K(V,W ) is a subvector space of B(V,W ).
(2) If A ∈ B(V, V ), T ∈ K(V,W ) and S ∈ B(W,W ) then STA ∈

K(V,W )
(3) K(V,W ) is closed in B(V,W ) for the operator norm.

Before we get to the proof, let us recall a characterisation of compactness
particularly well suited for complete metric spaces:

Proposition 3.4. A metric space (X, d) is compact if and only if it is
complete and totally bounded. X is totally bounded if for all ε > 0 there
exists some finite subset A ⊂ X s.t.

X =
⋃
a∈A

B⩽ε(a)

i.e. X is the union of finitely many balls of radius ε.

For a proof see 8.1. Now lets turn to the proof of Proposition 3.3:
Proof. (1) is follows from continuity of scalar multiplication and addition.
For (2) note that TA is again a compact operator since for any bounded set
E ⊂ V also A(E) is bounded and hence T (A(E)) is compact. Moreover, if

1This equivalence follows from the identities
T (B⩽r(0)) = T (rB⩽1(0)) = rT (B⩽1(0))

and rX = rX whereby rX := {rx : x ∈ X}.
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K : V ! W is any compact operator then SK is also a compact operator
since

S(K(B⩽1(0))) ⊂ S
(
K(B⩽1(0))

)
whereby the set on the right side is compact, being the image of a compact
set under a continuous transformation. Lastly, since closed subsets of com-
pact sets are again compact in a Hausdorff space this concludes the proof of
(2).

(3) Let T = limn!∞ Tn with Tn compact for n ⩾ 1. We show that
T (B⩽1(0)) is totally bounded. Let ε > 0 and n s.t. ∥Tn−T∥ ⩽ ε. For every
x, y ∈ B⩽1(0) we have then:

∥T (x)− T (y)∥ ⩽ ∥T (x)− Tn(x)∥+ ∥Tn(x)− Tn(y)∥+ ∥Tn(y)− T (y)∥
⩽ 2∥T − Tn∥+ ∥Tn(x)− Tn(y)∥.

Now Tn(B⩽1(0)) is totally bounded, hence ∃F ⊂ B⩽1(0) finite s.t. for all
y ∈ B⩽1(0) there exists some x ∈ F s.t.

∥Tn(x)− Tn(y)∥ ⩽ ε

which implies that for all y ∈ B⩽1(0) there exists some x ∈ F s.t.
∥T (x)− T (y)∥ ⩽ 3ε

and shows that T (B⩽1(0)) is totally bounded. ■
Corollary 3.5. If T ∈ B(V,W ) is the limit of a sequence (Tn)n⩾1 where
each Tn has finite rank, then T ∈ K(V,W ) is compact.

Example 3.5.(∗) Let H be a separable Hilbert space with orthonormal
basis {ek : k ⩾ 1} and define

T :
à

k⩾1

Cek !
à

k⩾1

Cek, T (ek) = λkek

with (λn)n⩾1 ⊂ C. Then T extends to a bounded operator H ! H iff
sup
k⩾1

|λk| < +∞

which then coincides with ∥T∥. Furthermore, we have that T is compact iff
limn!∞ λn = 0.

For diagonal operators in a Hilbert space as in the above example, bounded
operators correspond to bounded sequences, and compact operators to se-
quences vanishing at infinity. We are going to define a class of operators
which in the diagonal case would correspond to the condition

∑∞
n=1 |λn|2 <

+∞. These are the Hilbert-Schmidt operators.

Definition 3.6. Let H be a separable Hilbert space with orthonormal basis
{ek : k ∈ N}. Then T ∈ B(H,H) is called Hilbert-Schmidt if

∞∑
n,m=1

|⟨Ten, em⟩|2 < +∞.
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Lemma 3.7. If {fk : k ∈ N} is another orthonormal basis we have
∞∑

n,m=1

|⟨Ten, em⟩|2 =
∞∑

n,m=1

|⟨Tfn, fm⟩|2.

Proof.
∞∑
n=1

∞∑
m=1

|⟨Ten, em⟩|2 =
∞∑
n=1

∥Ten∥2

=
∞∑
n=1

∞∑
m=1

|⟨Ten, fm⟩|2

=

∞∑
m=1

∞∑
n=1

|⟨en, T ∗fm⟩|2 =
∞∑
m=1

∥T ∗fm∥2

and the last term can now be expanded in terms of the basis {fk}k∈N to
conclude. ■

Definition 3.8. If T : H ! H is Hilbert-Schmidt we define its Hilbert-
Schmidt norm by

∥T∥2 :=
Å ∑
n,m⩾1

|⟨Ten, em⟩|2
ã1/2

.

Corollary 3.9. If T : H ! H is Hilbert-Schmidt, so is T ∗ and ∥T∥2 =
∥T ∗∥2.

As one can guess from Example 3.5.(∗) the operator norm and the Hilbert-
Schmidt norm are quite different. However, we always have the following
inequality.

Lemma 3.10. If T ∈ B(H,H) is Hilbert-Schmidt then ∥T∥ ⩽ ∥T∥2.

Proof. For x ∈ H we find (using the triangle inequality)

∥Tx∥ ⩽
∞∑
n=1

|⟨x, en⟩|∥Ten∥ ⩽
Å ∞∑
n=1

|⟨x, en⟩|2
ã1/2Å ∞∑

n=1

∥Ten∥2
ã1/2

= ∥x∥∥T∥2

■

We conclude the following:

Proposition 3.11. If T : H ! H is a Hilbert-Schmidt operator, T is com-
pact.

Proof. Let {en : n ∈ N} be an ONB. Define Tn : B(H,H) by

Tn(ek) =

®
ek, 1 ⩽ k ⩽ n

0, k ⩾ n+ 1
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and notice that it has finite rank. In addition Tn − T is Hilbert-Schmidt
with

∥Tn − T∥22 =
∞∑

k=n+1

∥T (ek)∥2
n!∞−−−! 0

since by definition
∑∞

n=1 ∥T (en)∥2 < +∞. Using the previous Lemma we
conclude that ∥Tn − T∥ ! 0 for n ! ∞ proving that T is compact (cf. (3)
of Proposition 3.3). ■

From this we are going to get a large class of compact operators.

Proposition 3.12. Let (Ω,F , µ) be a σ-finite measure space, K ∈ L2(Ω×
Ω, µ× µ) and TK : L2(Ω) ! L2(Ω) the corresponding bounded operator we
have already discussed in Example 1.29. Then TK is Hilbert-Schmidt, in
particular compact and ∥Tk∥2 = ∥K∥L2(Ω×Ω).

Proof. We assume that Ω is s.t. L2(Ω) is separable, so let {fn : n ∈ N} be
an ONB of L2(Ω). Recall that by Fubini, for almost every x ∈ Ω, Kx(y) :=
K(x, y) is in L2(Ω). We compute (employing monotone convergence)

∞∑
n=1

∥TKfn∥2L2(Ω) =

∞∑
n=1

∫
Ω
|(TKfn)(x)|2 dµ(x)

=
∞∑
n=1

∫
Ω

∣∣〈Kx, fn
〉∣∣2 dµ(x)

=

∫
Ω

∞∑
n=1

∣∣〈Kx, fn
〉∣∣2 dµ(x)

=

∫
Ω

∞∑
n=1

∣∣〈Kx, fn
〉∣∣2 dµ(x)

=

∫
Ω

∥∥Kx

∥∥2
L2(Ω)

dµ(x) = ∥K∥L2(Ω×Ω)

■

3.2. Spectral theorem for compact self-adjoint operators

If H is a K-Hilbert space and T ∈ B(H,H) is self-adjoint, if dim(H) <
+∞ we know that all eigenvalues of T are real and there is an ONB of
H consisting of eigenvectors of T . We are going to generalise this result
by replacing the hypothesis dim(H) < +∞ by the hypothesis that T is
compact.

Fo simplicity of notation we will assume that all our Hilbert spaces are
C-vector spaces. Analogous results hold over R.

Let V be a Banach space and T ∈ B(V, V ). For λ ∈ C let
Vλ := {v ∈ V : T (v) = λv}.
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Then Vλ is clearly a closed subspace of V (since T is continuous). Recall
that λ is an eigenvalue of T if Vλ ̸= {0} in which case the elements of Vλ are
called eigenvectors of T corresponding to the eigenvalue λ.

Example 3.13. Let H = L2([0, 1],C) where we take the usual Lebesgue
measure λ on [0, 1]. Define Tf(x) = xf(x) for f ∈ H. Then T is clearly
bounded and self-adjoint since for f, g ∈ H we have

⟨Tf, g⟩ =
∫ 1

0
xf(x)g(x) dx =

∫ 1

0
f(x)xg(x) dx = ⟨f, Tg⟩.

However, if T had an eigenvalue α ∈ C it would satisfy αf(x) = xf(x) for
a.e. x ∈ [0, 1] so that (α − x)f(x) = 0 a.e. implying f(x) = 0 a.e. because
(α− x) ̸= 0 a.e.

Theorem 3.14 (Spectral Theorem). Let T ∈ B(H,H) be compact self-
adjoint where H is a Hilbert space. Then H has an ONB consisting of
eigenvectors of T . In addition: dim(Hλ) < +∞ for all λ ̸= 0 and

{λ ∈ C : |λ| ⩾ ε, dim(Hλ) > 0}

is finite for all ε > 0.

The proof is based on two lemmas, one of which is a verification whereas
the second one is trickier.

Lemma 3.15. Let T ∈ B(H,H) where H is a Hilbert space.
(1) If T = T ∗ and W ⊂ H is a T -invariant subspace, so is W⊥.
(2) If T = T ∗ then ⟨Tv, v⟩ ∈ R for all v ∈ H; in particular all eigenvalues

of T are real.
(3) ∥T∥ = sup{|⟨T (v), w⟩| : ∥v∥ ⩽ 1, ∥w∥ ⩽ 1}.
(4) If T = T ∗ and λ ̸= α then Hλ and Hα are orthogonal.

Proof. (1) For u ∈W⊥ we find

⟨Tu,w⟩ = ⟨u, T ∗w⟩ = ⟨u, Tw⟩ = 0 ∀w ∈W

since Tw ∈W .
(2) Indeed:

⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, T ∗v⟩ = ⟨Tv, v⟩

(3) Using Corollary 2.10 we compute

∥T∥ = sup
∥v∥⩽1

∥Tv∥ = sup
∥v∥⩽1

sup{|f(v)| : f ∈ H∗, ∥f∥ ⩽ 1}.
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Now by Riesz representation theorem all linear forms in H∗ are of the form
x 7! ⟨x, y⟩ for some y ∈ H reducing the above to1

∥T∥ = sup
∥v∥⩽1

sup
∥w∥⩽1

|⟨Tv,w⟩|.

(4) For all v ∈ Hλ and w ∈ Hα:
λ⟨v, w⟩ = ⟨Tv,w⟩ = ⟨v, Tw⟩ = α⟨v, w⟩ = α⟨v, w⟩

but since λ ̸= α we must have ⟨v, w⟩ = 0. ■
The next lemma gives the key to the whole theorem.

Lemma 3.16. Let T ∈ B(H) with T = T ∗. Then
∥T∥ = sup{|⟨Tv, v⟩| : v ∈ H}.

Proof. Let s := sup{|⟨Tv, v⟩| : v ∈ H}; then clearly s ⩽ ∥T∥. We want to
show that

|⟨Tv,w⟩| ⩽ s∥v∥∥w∥
which by (3) of the previous lemma implies the desired equality. Since
multiplying w by some α ∈ C with |α| = 1 does not affect the above
inequality, we may assume that ⟨Tv,w⟩ ∈ R. Now, from T = T ∗ and
⟨Tv,w⟩ ∈ R we deduce

⟨T (v + w), v + w⟩ = ⟨Tv, v⟩+ 2⟨Tv,w⟩+ ⟨Tw,w⟩
⟨T (v − w), v − w⟩ = ⟨Tv, v⟩ − 2⟨Tv,w⟩+ ⟨Tw,w⟩

which combined yields
4⟨Tv,w⟩ = ⟨T (v + w), v + w⟩ − ⟨T (v − w), v − w⟩.

Hence
|⟨Tv,w⟩| ⩽ s

4
(∥v + w∥2 + ∥v − w∥2) = s

2
(∥v∥2 + ∥w∥2).

Lastly, to turn this sum into our desired product we will again exploit some
symmetry, namely that replacing v and w simultaneously by

√
av and w√

a

for some a > 0 we find:

|⟨Tv,w⟩| ⩽ s

2

(
a∥v∥2 + 1

a
∥w∥2

)
.

Since we may assume v ̸= 0 we can set a = ∥w∥
∥v∥ and get

|⟨Tv,w⟩| ⩽ s∥v∥∥w∥
■

Now, let us turn to the proof of Theorem ??.
1Recall that for all y ∈ H

∥[x 7! ⟨x, y⟩]∥ = sup
∥x∥⩽1

|⟨x, y⟩| ⩽ ∥x∥∥y∥

and for x = y this holds with equality, i.e. ∥[x 7! ⟨x, y⟩]∥ = ∥y∥.
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Proof. (1) We claim that either ∥T∥ or −∥T∥ is an eigenvalue: We may
assume T ̸= 0; let (vn)n⩾1 be a sequence with ∥vn∥ = 1 for all n ⩾ 1 and
limn!∞ |⟨Tvn, vn⟩| = ∥T∥. We may assume, passing to a subsequence if
necessary, that limn!∞⟨Tvn, vn⟩ = λ ∈ R (it is a real number by (2) of
Lemma 3.15) and proceed to show that λ is an eigenvalue. Clearly λ = ∥T∥
or λ = −∥T∥. Since T is compact, again modulo passing to a subsequence1,
we may assume limn!∞ Tvn = w. Since λ ≠ 0 we get that w ̸= 0. Next we
compute

∥Tvn − λvn∥2 = ∥Tvn∥2 − 2λ⟨Tvn, vn⟩+ λ2∥vn∥2

⩽ 2∥T∥2 − 2λ⟨Tvn, vn⟩

which together with limn!∞⟨Tvn, vn⟩ = λ and λ2 = ∥T∥2 implies
lim
n!∞

∥Tvn − λvn∥ = 0.

Combining this with limn!∞ Tvn = w we obtain

lim
n!∞

λvn = w ⇐⇒ lim
n!∞

vn =
w

λ

and hence T (w) = λw.
(2) By Zorn’s Lemma we can choose an orthonormal set A ⊂ H of eigen-

vectors which is maximal among all orthonormal sets of eigenvectors. Let
⟨A⟩ be the C-vector subspace of H spanned by these vectors and W := ⟨A⟩
its closure. We want to show that W = H. Indeed, if this was not the case we
would have W⊥ ̸= {0} and since T (W ) ⊂W we have T (W⊥) ⊂W⊥ (by (2)
of Lemma 3.15). In addition W⊥ is a Hilbert space and T |W⊥ : W⊥ !W⊥

is self-adjoint and compact. Hence, by (1) T |W⊥ admits an eigenvector,
contradicting the maximality of A.

(3) Let ε > 0 and define

W :=
à

|λ|⩾ε
Hλ.

Observe that the sum
À

|λ|⩾εHλ is direct since for all α ̸= β we have Hα ⊥
Hβ (by (4) of Lemma 3.15). We are going to show that dim(W ) < +∞ by
showing the inclusion

T (BW
⩽1(0)) ⊃ BW

⩽ε(0)

which implies that BW
⩽ε(0) is compact, so dim(W ) < +∞.

Since Hλ ⊂ H is a closed subspace (by continuity of T ), for λ ∈ R let
Pλ : H ! Hλ be the orthogonal projection onto Hλ. Let v ∈ BW

⩽ε(0); then
v =

∑
|λ|⩾ε Pλ(v) with

∥v∥2 =
∑
|λ|⩾ε

∥Pλ(v)∥2.

1Note that (Tvn)n⩾1 ⊂ T (B⩽1(0)) and by compactness of T the set T (B⩽1(0)) is
compact.
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Set w :=
∑

|λ|⩾ε
1
λPλ(v) which exists since

∥w∥2 =
∑
|λ|⩾ε

1

λ2
∥Pλ(v)∥2 ⩽

1

ε2

∑
|λ|⩾ε

∥Pλ(v)∥2 =
∥v∥2

ε2
⩽ 1

and

Tw = T

Å∑
|λ|⩾ε

1

λ
Pλ(v)

ã
=

∑
|λ|⩾ε

1

λ
T (Pλ(v)) =

∑
|λ|⩾ε

Pλ(v) = v

This shows T (BW
⩽1(0)) ⊃ BW

⩽ε(0). ■
Example 3.17 (Unitary representations of compact groups). This examples
is meant to give a glimpse into the field of unitary representations and more
specifically in the problem of decomposing them into irreducible ones.

We assume that (X, d) is a compact metric space on which a group G
acts by isometries (distance preserving bijections):

G×X ! X, (g, x) 7! gx

with d(gx, gy) = d(x, y) for all g ∈ G and x, y ∈ X. We assume in addition
that G preserves a regular positive Borel measure µ on X.

Fundamental example of such a situation is: X = S2 with d being the
angular distance on S2, L the Lebesgue measure1 on S2 and G = SO(3).

Now back to the general setting, for g ∈ G and f ∈ L2(X,µ) define
π(g)f(x) = f(g−1x).

As we have already seen in Example 1.28, π(g) is an unitary operator of
L2(X), since (cf. Theorem 8.3)

∥π(g)f∥2L2(X) =

∫
X
|f(g−1x)|2 dµ(x)

=

∫
X
|f(x)|2 dg−1

∗ µ(x)

=

∫
X
|f(x)|2 dµ(x) = ∥f∥L2(X)

where by used that g preserves the measure µ, i.e.
g−1
∗ µ(E) = µ(g(E)) = µ(E).

Hence
π : G! U(L2(X))

is a group homomorphism.
Task: Decompose L2(X) into an orthogonal sum of closed subspaces that

are invariant under π(g) for all g ∈ G and ”minimal” in a reasonable sense.
1The Lebesgue measure on Sn can be defined by

L(E) = λn+1({tx : x ∈ E, 0 ⩽ t ⩽ 1}) ∀E ⊂ Sn.
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Let now K ∈ C(X × X) be a continuous kernel such that K(gx, gy) =
K(x, y) for all g ∈ G and x, y ∈ X. We claim now that

π(g)TK = TKπ(g).

Indeed, a direct computation yields

(π(g)TKf)(x) = TKf(g
−1x)

=

∫
X
K(g−1x, y)f(y) dµ(y)

=

∫
X
K(x, gy)f(y) dµ(y)

=

∫
X
K(x, y)f(g−1y) dµ(y) = (TKπ(g))f(x).

This has the following remarkable consequences: If K(x, y) = K(y, x) for
all x, y ∈ X; then TK : L2(X) ! L2(X) is a compact self-adjoint operator.
For every eigenvalue λ ̸= 0 of TK , the corresponding finite dimensional
eigenspace Hλ ⊂ L2(X) of TK is invariant under π(g), g ∈ G.

In fact in our situation there is a pletora of such kernels, namely if
k : [0,∞) ! R is continuous then K(x, y) := k(d(x, y)) is such a valid
kernel.

This leads to the following theorem.

Theorem 3.18. L2(X) is a direct orthogonal sum of π(G)-invariant (irre-
ducible) finite dimensional subspaces.

In the case of SO(3) acting on S2 this decomposition takes the following
concrete form: Recall that a polynomial P ∈ R[x, y, z] is harmonic if ∆P =
0 where

∆ = ∂2x + ∂2y + ∂2z

is the Laplace operator. Let then

Hn = {P |S2 : P : R3 ! R is homogeneous of degree n and harmonic}.

Then:

L2(S2) =
à

n⩾0

Hn

and the action of SO(3) in Hn is irreducible.

3.3. Mercer’s Theorem

We begin with the current terminology belonging to this context. A kernel
on a set X is a function K : X×X ! R; it is symmetric if K(x, y) = K(y, x)
for all x, y ∈ X.
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Definition 3.19. A symmetric kernel K on a set X is positive semidefinite
if for all n ⩾ 1 and x1, . . . , xn ∈ X, the symmetric matrix (K(xk, xj))k,j is
positive semidefinite. That is, for all c1, . . . , cn ∈ R,

n∑
k,j=1

ckcjK(xk, xj) ⩾ 0.

The case n = 1 implies K(x, x) ⩾ 0 for all x ∈ X (3.20).

Example 3.21. If H is a R-Hilbert space and φ : X ! H is any map, then
K(x, y) := ⟨φ(x), φ(y)⟩

is a positive semidefinite kernel on X.

In our context we will take (X, d) to be a compact metric space endowed
with a regular Borel probability measure µ ∈M1(X). Given K ∈ C(X×X)
continuous we know from Proposition 3.12 that the operator

TK : L2(X,µ) ! L2(X,µ), TKf(x) =

∫
X
K(x, y)f(y) dµ(y)

is Hilbert-Schmidt and hence compact. If in addition K is a symmetric
kernel, TK is self-adjoint and the spectral theorem (Theorem 3.14) applies.
Observe that our hypothesis on X and µ guarantees that L2(X) is separable.

Theorem 3.22 (Mercer). Let (X, d) be a compact metric space, µ ∈M1(X)
Borel regular such that for all U ⊂ X open non-empty µ(U) > 0. Let K ∈
C(X×X) be a continuous positive semi-definite kernel on X. Then there is
an ONB {φn}n⩾1 of ker(TK)⊥ consisting of continuous eigenfunctions of TK
and if λk is the eigenvalue corresponding to φk then λk > 0 for all k ⩾ 1. In
addition,

K(x, y) =

∞∑
n=1

λnφn(x)φn(y)

the sum being absolutely and uniformly convergent.

Observe that TK being Hilbert-Schmidt gives us
∞∑
n=1

λ2n =

∞∑
n,m=1

|⟨TKφn, φm⟩|2 < +∞

Corollary 3.23. In the situation of Theorem 3.22 we have

K(x, x) =
∞∑
n=1

λnφn(x)
2,

with uniform convergence on the right hand side. In particular
∞∑
n=1

λn =

∫
X
K(x, x) dµ(x) < +∞.
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We proceed with the proof of Mercer’s theorem by first showing the fol-
lowing lemma whose proof is left as an exercise.

Lemma 3.24. Let (X, d) and µ ∈ M1(X) be as in Mercer’s theorem. In
particular, µ(U) > 0 for nonempty open U ⊂ X. Given a symmetric K ∈
C(X ×X), the following are equivalent:

(1) K is positive semidefinite.
(2) For all f ∈ C(X) we have∫

X

∫
X
f(x)f(y)K(x, y) dµ(x) dµ(y) ⩾ 0.

(3) ⟨TKf, f⟩ ⩾ 0 for all f ∈ L2(X).

Proof. (1) =⇒ (2) Let f ∈ C(X) and ε > 0 be arbitrary. By uniform con-
tinuity of K and f we can find δ > 0 s.t. for all x1, x2, y1, y2 ∈ X, (x2, y2) ∈
B<δ(x1)×B<δ(y1) implies that |K(x1, y1)−K(x2, y2)| < ε as well as |f(x2)−
f(x1)| < ε. Pick x1, . . . , xn ∈ X s.t.

⋃n
i=1B<δ(xi) = X (compactness) and

turn this into a disjoint partition of Borel sets by setting M1 := B<δ(x1) and
Mk := B<δ(xk) \

⋃
1⩽i<k B<δ(xi). Then we have∫

X

∫
X
f(x)f(y)K(x, y) dµ(x) dµ(y)

=
n∑

i,j=1

∫
Mj

∫
Mi

f(x)f(y)K(x, y) dµ(x) dµ(y)

=
n∑

i,j=1

∫
Mj

∫
Mi

(f(xi) + εi)(f(xj) + εj)(K(xi, xj) + εij) dµ(x) dµ(y)

=
n∑

i,j=1

f(xi)f(xj)K(xi, xj)︸ ︷︷ ︸
⩾0

+O(ε) ⩾ O(ε)

with εi, εjk ∈ (−ε, ε) for all 1 ⩽ i, j, k ⩽ n. We used that due to continuity
one has |f | ⩽ C1 and |K| ⩽ C2 on X respectively X × X. Letting ε ! 0
yields the desired inequality.

(2) =⇒ (3) We employ density of C(X) in L2(X) (note that due to com-
pactness C(X) ⊂ L2(X) coincides with the continuous compactly supported
functions on X). Let f ∈ L2(X) and ε > 0 be arbitrary; let φε ∈ C(X) s.t.
∥φε − f∥L2(X) < ε. Then

⟨TKf, f⟩ = ⟨TK(f − φε + φε), f − φε + φε⟩
= ⟨TK(f − φε), (f − φε)⟩+ 2⟨TK(f − φε), φε⟩+ ⟨TKφε, φε⟩︸ ︷︷ ︸

⩾0

.

Now, by Cauchy-Schwarz,
|⟨TK(f − φε), φε⟩| ⩽ ∥TK(f − φε)∥L2(X)∥φε∥L2(X)
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⩽ ∥K∥L∞(X×X)∥f − φε∥L2(X)∥φε∥L2(X)

⩽ ε∥K∥L∞(X×X)∥φε∥L2(X)

which goes to 0 as ε! 0. We used that ∥K∥L∞(X×X) < +∞ and ∥φε∥L2(X) !
∥f∥L2(X) < +∞ as ε! 0. A similar argument applies to the first summand.

(3) =⇒ (1) Let c1, . . . , cn ∈ R and x1, . . . , xn ∈ X be arbitrary. Given
ε > 0 we choose, by uniform continuity of K, some δ > 0 s.t. for any
x1, x2, y1, y2 ∈ R,

d(x1, x2) + d(y1, y2) < δ =⇒ |K(x1, y1)−K(x2, y2)| < ε.

Now we set

fε =
n∑
k=1

ck
1

µ(B<δ(xk))
1B<δ(xk)

which is well defined (since B<δ(xk) is open and nonempty) and in L2(X).
We find
0 ⩽ ⟨TKfε, fε⟩

=

n∑
k,j=1

ckcj
µ(B<δ(xk))µ(B<δ(xj))

∫
B<δ(xj)

∫
B<δ(xk)

K(x, y) dµ(x) dµ(y)

=
n∑

k,j=1

ckcj
µ(B<δ(xk))µ(B<δ(xj))

∫
B<δ(xk)

∫
B<δ(xj)

(K(xk, xj) +O(ε)) dµ(x) dµ(y)

=
n∑

k,j=1

ckcjK(xk, xj) +O(ε)
n∑

k,j=1

ckcj

so letting ε! 0 yields the desired inequality.
■

We now come to the proof of Mercer’s Theorem.

Proof. (1) We start by observing that for all f ∈ L2(X),

TKf(x) =

∫
X
K(x, y)f(y) dµ(y)

is well defined for all x ∈ X and continuous. Indeed,

|TKf(x1)− TKf(x2)| ⩽
∫
X
|K(x1, y)−K(x2, y)||f(y)| dµ(y)

⩽
Å∫

X
|K(x1, y)−K(x2, y)|2 dµ(y)

ã1/2
∥f∥L2(X).

Now K : X×X ! R being continuous on the compact metric space implies
uniform continuity; that is, for all ε > 0 there exists a δ > 0 s.t.

d(x1, x2) + d(y1, y2) < δ =⇒ |K(x1, y1)−K(x2, y2)| < ε.
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In particular,
d(x1, x2) < δ =⇒ |K(x1, y)−K(x2, y)| < ε

for all y ∈ X which implies
|TKf(x1)− TKf(x2)| ⩽ ε∥f∥L2(X).

(2) By the spectral theorem let {fn}n⩾1 be an ONB of ker(TK)⊥ consisting
of eigenvectors of TK and write λn for the eigenvalue corresponding to fn.
Then, by Lemma 3.24, 0 ⩽ ⟨TKfn, fn⟩ = λn and since fn ̸∈ ker(TK) we get
λn > 0 for all n ⩾ 1. Thus, we have fn = 1

λn
TKfn a.e. By (1) we know

that TKfn is continuous, hence we define φn(x) = 1
λn
TKfn(x) for all x ∈ X.

Then φn ∈ C(X) and φn = fn a.e. This proves the first part of the theorem.
(3) Define

Kn(x, y) := K(x, y)−
n∑
k=1

λkφk(x)φk(y).

Then Kn ∈ C(X×X) and it is symmetric. We claim that Kn is psd. Indeed,
for f ∈ L2(X) we have

⟨TKnf, f⟩ = ⟨TKf, f⟩ −
n∑
k=1

λk⟨f, φk⟩2.

Now we expand f as

f =
∞∑
k=1

⟨f, φk⟩φk + g

where g is the orthogonal projection of f onto ker(Tk). Then

⟨TKf, f⟩ =
∞∑
k=1

λk⟨f, φk⟩2

and hence

⟨TKnf, f⟩ =
∞∑

k=n+1

λk⟨f, φk⟩2 ⩾ 0

so that psd. follows from Lemma 3.24. In particular

K(x, x)−
n∑
k=1

λkφk(x)
2 = Kn(x, x) ⩾ 0

so that
n∑
k=1

λkφk(x)
2 ⩽ K(x, x)

with the left hand side (absolutely) convergent for every x ∈ X.
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(4) We deduce for 1 ⩽ N ⩽M :
M∑
k=N

λk|φk(x)||φk(y)| ⩽
Å M∑
k=N

λkφk(x
2)

ã1/2Å M∑
k=N

λkφk(y)
2

︸ ︷︷ ︸
⩽K(y,y)

ã1/2
⩽
Å M∑
k=N

λkφk(x)
2

ã1/2
∥K∥1/2b .

This implies that for all x ∈ X,
∑∞

k=1 λkφk(x)φk(y) converges absolutely
and uniformly in y and by symmetry for all y ∈ X converges absolutely and
uniformly in x.

(5) Let now Kx(y) := K(x, y), take any ONB {ψn}n⩾1 of ker(TK) and
expand Kx ∈ L2(X) in the ONB {φn, ψn}n⩾1:

Kx =

∞∑
k=1

⟨Kx, φk⟩︸ ︷︷ ︸
λkφk(x)

φk +

∞∑
k=1

⟨Kx, ψk⟩ψk︸ ︷︷ ︸
=0

so that Kx =
∑∞

k=1 λkφk(x)φk. This means

Kx = lim
n!∞

n∑
k=1

λkφk(x)φk

in L2(X). Thus, there exists a subsequence (nℓ)ℓ⩾1 s.t.
∑nℓ

k=1 λkφk(x)φk(y)
converges pointwise a.e. in y to Kx(y). Now this implies that for all x ∈ X
the continuous functions y 7!

∑∞
k=1 λkφk(x)φk(y) and y 7! K(x, y) coincide

a.e. Since µ(U) > 0 for nonempty open U ⊂ X we deduce that they coincide
everywhere (employing continuity). Hence

K(x, y) =
∞∑
k=1

λkφk(x)φk(y)

for all x, y ∈ X and in particular

K(x, x) =
∞∑
k=1

λkφk(x)
2

for all x ∈ X.
(6) Now we show that the convergence of

∑n
k=1 λkφk(x)

2 to K(x, x) is
uniform. Fix ε > 0 and let

V ε
n =

ß
x ∈ X :

n∑
k=1

λkφk(x)
2 > K(x, x)− ε

™
.

Then V ε
n is open for all n ⩾ 1, V ε

n ⊂ V ε
n+1 and by pointwise convergence⋃

n⩾1

V ε
n = X.
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Since X is compact there exists a finite subcover and due to the inclusions
there must exist some n(ε) ⩾ 1 s.t. V ε

n(ε) = X which shows that the conver-
gence is uniform.

(7) Going back to the inequality in (4):
M∑
k=N

λk|φk(x)||φk(y)| ⩽
Å M∑
k=N

λkφk(x)
2

ã1/2Å M∑
k=N

λkφk(y)
2

ã1/2
we deduce that

∑∞
k=1 λkφk(x)φk(y) converges absolutely and uniformly in

X ×X with sum K(x, y). ■
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Chapter 4. Baire Category and its consequences
This chapter is devoted to some of the major theorems in functional anal-

ysis. They are all consequences of a result in point-set topology, that is
the Baire category theorem. This theorem is a topological analogue of the
fact from measure theory that a set of positive measure cannot be countable
union of sets of measure zero.

4.1. Baire Cateogry

The idea of category of a set in a metric space is to describe ”smallness”
resp. ”generosity” in purely topological terms. Its origins lie in the thesis of
Baire who answered the following question: given a sequence fn : R ! R of
continuous functions converging pointwise to a function f : R ! R, that is

f(x) = lim
n!∞

fn(x) ∀x ∈ R

what can one say about the subset of points in R at which f is continuous?
We will see that this set is ”big” in a precise way. We now turn to the
relevant definitions: let X be a topological space and S ⊂ X a subset. We
recall that the interior S◦ of S is the union of all open subsets of X contained
in S.

Definition 4.1. A subset S ⊂ X is nowhere dense if its closure S has empty
interior, that is (S)◦ = ∅.

Note that S is nowhere dense iff it is not dense in any open ball B<r(x) ⊂
X. Indeed, if (S)◦ = ∅ and S was dense in some B<(x) then its closure
would contain B<r(x), a contradiction. Conversely, if (S)◦ ̸= ∅ then S
contains some open ball B<r(x), so in particular S is dense in B<r(x).

Example 4.2. (a) A point in Rd is nowhere dense (n ⩾ 1).
(b) The Cantor set in [0, 1] is (closed and) nowhere dense.
(c) Q ⊂ R is not nowhere dense since Q = R.

However:
(d) {(x, 0) : x ∈ Q} is nowhere dense in R2.
(e) Let f : Rd ! R be smooth and assume y ∈ f(Rd) is a regular value.

Then f−1(y) ⊂ Rd is nowhere dense in Rd.

Definition 4.3. (1) A set S ⊂ X is of first category in X if it is a
countable union of nowhere dense subsets of X; a subset S ⊂ X
that is not of the first category is of the second category.

(2) A subset S ⊂ X is generic if its complement is of the first category.

Example 4.4. Q, while being dense in R, is however of first category and
hence R \Q, while being dense in R as well, is generic.

The main result of Baiare is that R is of second category in itself. This
actually holds for complete metric spaces as the following shows.
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Theorem 4.5. Let (X, d) be a complete metric space with X ̸= ∅. Then
the following assertions hold:

(1) Let Un ⊂ X, n ∈ N, be open and dense subsets. Then U :=
⋂
n∈N Un

is dense in X.
(2) Let Fn ⊂ X, n ∈ N, be a family of closed subsets ofX s.t. (

⋃
n∈N Fn)

◦ ̸=
∅. Then there is n0 ∈ N with F ◦

n0
̸= ∅.

(3) Let X =
⋃
n∈N Fn with Fn closed for all n ∈ N. Then there exists

n0 ∈ N with F ◦
n0

̸= ∅.
(4) IfX =

⋃
n∈NAn then there existsAn which is dense in someB<r(x) ⊂

X.

We begin with

Lemma 4.6. For U ⊂ X and F = X \ U the following are equivalent:
(1) U is open and dense in X.
(2) F is closed and nowhere dense in X.

Proof. (1) =⇒ (2): If there existed V ⊂ F open we would also have V ∩U ̸=
∅ due to density of U in X, which is a contradiction.

(2) =⇒ (1): Let x ∈ X and Ux be some neighbourhood of x. Then
Ux ∩ U ̸= ∅ since otherwise Ux ⊂ X \ U which would contradict nowhere
density of X \ U . Thus U is dense in X. ■

Now let us proof Theorem 4.5.

Proof. (1) Let V ⊂ X be an arbitrary open set. Then by density of U1

there exists some x1 ∈ U1 ∩ V and some 0 < r1 < 1 s.t. B⩽r1(x1) ⊂ U1 ∩ V .
This follows from the fact that U1 ∩ V is open so we can find an open ball
around x1 contained in U1 ∩ V and in turn some smaller open ball stricly
contained in the former so that its closure will also be contained in U1 ∩ V .
We now iterate this, so in the next step with Br1(x1) in the role of V and
0 < r2 <

1
2 .

By means of this we construct the sequence (xn, rn) recursively1 s.t. 0 <
rn <

1
n and

B⩽rn(xn) ⊂ Un ∩Brn−1(xn−1) ⊂
n⋂
k=1

Uk ∩ V

whereby we use that the finite intersection of open sets is open. From the
construction it becomes clear that (xn)n⩾1 is a Cauchy sequence since for
n,m ⩾ N we have d(xn, xm) ⩽ 1

N , so by completeness of X it converges
to some x ∈ X. Lastly, for any n ⩾ 1 we have that x ∈ B⩽rn(xn) since
(xm)m⩾n is a convergent sequence contained in the closed set B⩽rn(xn),
letting us conclude x ∈ Un for all n ⩾ 1, as desired.

1Note that for justifying this construction we require the axiom of dependent choice.
One can in fact show that the axiom of dependent choice is equivalent to the Baire Cate-
gory Theorem.
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(1) =⇒ (3): If F ◦
n = ∅ for all n ∈ N then

∅ = X \
⋃
n∈N

Fn =
⋃
n∈N

(X \ Fn)

which contradicts (1) since X \Fn is dense in X for all n ∈ N using Lemma
4.6.

(1) =⇒ (4): This is a direction consequence of (3), which guarantees the
existence of some An s.t. An has non-empty interior. ■

In order to prove (2) we need

Lemma 4.7. Let ∅ ̸= Y ⊂ X be open in a complete metric space (X, d).
Then Y satisfies properties (1) and (3) in Theorem 4.5.

Proof. Y is again complete, being the closed subset of a complete metric
space. Now if Un is dense in Y it is also dense in Y so we can apply (1)
of Theorem 4.5 to deduce that

⋂
n⩾1 Un is dense in Y and thus also in Y .

(3) is implied by (1) (note that (3) does not require the metric space to be
complete but merely to satisfy (1)). ■

Now let us proof (2) of Theorem 4.5.

Proof. Let Fn be closed in X and U := (
⋃
n⩾1 Fn)

◦ non empty. Then Fn∩U
is closed in U and clearly U =

⋃
n⩾1(Fn ∩ U). Hence by (3) of Lemma 4.7

there is a n0 s.t. U ∩ Fn0 contains a non-empty subset W that is open in U
hence in X. Thus 0 ̸=W ⊂ Fn0 which implies F ◦

n0
̸= ∅. ■

We can rephrase a consequence of Theorem 4.5 as follows:

Corollary 4.8. A complete non-empty metric space is of second category,
as is any of its non-empty open subsets.

Corollary 4.9. Any generic subset of a non-empty complete metric space
is dense, as is any generic subset of an open subset of such a metric space.

Remark 4.10. There is little relation between being generic and bein of
positive Lebesgue measure, as the following examples shows:

(1) λ([0, 1]) = 1 but [0, 1] is not generic, say in R.
(2) Let N ! Q, n 7! qn be a bijection and for every n ⩾ 1,

Un :=
⋃
k∈N

(qk − 2−(n+k+1), qk + 2−(n+k+1)).

Then

λ(Un) ⩽
∞∑
k=0

2−(n+k) = 2−(n−1).
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However, Un is open and dense in R, hence
⋂
n⩾1 Un ⊂ R is generic

but

λ

Å⋂
n⩾1

Un

ã
= lim

n!∞
λ(Un) = 0

4.2. Some applications

Next we present two applications of the Baire category theorem, the first
is due to Baire:

Theorem 4.11. Let fn : X ! C be a sequence of continuous functions on
a complete metric space X such that

f(x) = lim
n!∞

fn(x)

exists for all x ∈ X. Then the set of points where f is continuous is generic
in X. For a proof cf. [SS11] Chapter 4, section 1.1.

It is well know that in R there are continuous functinos that are nowhere
differentiable, e.g.

f(x) =
∞∑
n=0

2−nαei2
nx, 0 < α ⩽ 1

and the question is: how common is this phenomenon? In fact, let C([0, 1])
be the Banach space of continuous functions with sup norm ∥f∥b = supx∈[0,1] |f(x)|.
Then:

Theorem 4.12. The set of functinos in C([0, 1]) that are nowhere differen-
tiable is generic.

Again, a proof can be found in [SS11]: Chapter 4, section 1.2.
In fact, while both theorems use the Baire Category Theorem, the proofs

are rather tricky.
We close this subsection with an application of Baire category which will

have far reaching far reaching consequences in Function Analysis.

Proposition 4.13 (Principle of uniform boundedness). Let (X, d) be a com-
plete metric space and fλ : X ! R, λ ∈ Λ a family of continuous functions
such that

sup
λ∈Λ

|fλ(x)| < +∞ ∀x ∈ X.

Then there is an open ball B<r(y) (r > 0) s.t.
sup
λ∈Λ

sup
x∈B

|fλ(x)| < +∞.

Proof. For every n ∈ N consider the closed subset
An : = {x ∈ X : |fλ(x)| ⩽ n ∀λ ∈ Λ}
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=
⋂
λ∈Λ

{x ∈ X : |fλ(x)| ⩽ n}.

Then by hypothesis X =
⋃
n∈NAn and by (3) of Theorem 4.5 there exists

n0 ∈ N with A◦
n0

̸= ∅. Now take y ∈ A◦
n0

and r > 0 with B<r(y) ⊂ An0 . ■

4.3. The uniform boundedness principle

The combination of Proposition 4.13 with the linear structure of a vector
space has the following consequences:

Theorem 4.14 (Banach-Steinhaus). Let (V, ∥ · ∥V ) be a Banach space,
(W, ∥ · ∥W ) a normed space and Tλ ∈ B(V,W ), λ ∈ Λ, a family of bounded
linear operators with

sup
λ∈Λ

∥Tλ(v)∥W < +∞ ∀v ∈ V.

Then supλ∈Λ ∥Tλ∥ < +∞.

Proof. Proposition 4.13 gives us an open ball B<r(x) ⊂ V s.t.

sup
λ∈Λ

sup
v∈B<r(x)

∥Tλ(v)∥W ⩽ C < +∞

so for all v ∈ B<1(0) =
1
rB<r(x)−

x
r we can write v = 1

ruv−
x
r for uv ∈ B<r(x)

to find

∥Tλ(v)∥W =
∥∥∥1
r
Tλ(uv)−

1

r
Tλ(x)

∥∥∥ ⩽ 2C

r
∀v ∈ B<1(0), ∀λ ∈ Λ

yielding supλ∈Λ ∥Tλ∥ < +∞. ■

Our first application is to what one can say about a sequence Tn : V !W
of bounded operators converging pointwise.

Corollary 4.15. Let Tn ∈ B(V,W ) where V is a Banach space and assume

T (x) = lim
n!∞

Tn(x)

exists for for all x ∈ V . Then
(1) supn⩾1 ∥Tn∥ < +∞
(2) T ∈ B(V,W )
(3) ∥T∥ ⩽ lim infn!∞ ∥Tn∥.

Remark 4.16. The theorem does not say that ∥Tn − T∥ ! 0. Indeed,
consider

Tn : ℓ
2(N) ! ℓ2(N), x =

∞∑
k=1

xkδk 7! xnδn.

Then ∥Tnx∥ = |xn| ! 0 for all n ∈ N so limn!∞ Tnx = 0. However,
∥Tn∥ = 1 for all n ∈ N.
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Proof. (1) Since (Tnx)n⩾1 converges for all x, we have supn⩾1 ∥Tnx∥ < +∞
for all x so, by Theorem 4.14 , supn⩾1 ∥Tn∥ < +∞.

(2)+(3) By linearity of the limit T is linear. Let l := lim infn!∞ ∥Tn∥
and (Tnk

)k⩾1 be a subsequence s.t. l = limk!∞ ∥Tnk
∥. Now, for all x ∈ V

we have Tx = limk!∞ Tnk
(x) and hence

∥Tx∥ = lim
k!∞

∥Tnk
x∥ ⩽ lim

k!∞
∥Tnk

∥∥x∥

implying ∥T∥ ⩽ l. ■

Next we deduce two corollaries that are useful to detect bounded subsets
in Banach spaces.

Corollary 4.17. Let E be a normed space and B ⊂ E a subset such that
for all f ∈ E∗, f(B) ⊂ K is bounded. Then B ⊂ E is bounded.

Proof. We apply Theorem 4.14 with V = E∗, W = K and Λ = B. Define
for all v ∈ B,

Tv : E
∗ ! K, f 7! f(v).

Then supv∈B |Tvf | < +∞ for all f ∈ E∗. Using Theorem 4.14 we deduce
that

sup
v∈B

∥Tv∥ < +∞

and by Corollary 2.10 we have ∥Tv∥ = ∥v∥ concluding the proof. ■

We also have the analogous dual statement:

Corollary 4.18. Assume E is a Banach space and B∗ ⊂ E∗ is a subset
such that {f(x) : f ∈ B∗} ⊂ K is bounded for all x ∈ E. Then B∗ ⊂ E∗ is
bounded.

Proof. Similarly to the previous proof we define for all f ∈ B∗

Tf : E ! K, x 7! f(x).

By assumption we have supf∈B∗ ∥Tf (x)∥ < +∞ for all x ∈ E, hence invoking
Theorem 4.14 (with V = E, W = K and Λ = B∗) yet again yields

sup
f∈B∗

∥Tf∥ < +∞.

Together with

sup
f∈B∗

∥Tf∥ = sup
f∈B∗

sup
x∈E

|f(x)| = sup
f∈B∗

∥f∥

this concludes the proof. ■
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4.4. The open mapping theorem and the closed graph theorem

A general question, once one has a category, is whether bijective mor-
phisms are automatically isomorphisms. In our case this translates to the
question whether a bounded linear operator between normed spaces that is
bijective has a bounded inverse. In general the answer to this question is
no. But if both spaces are Banach, the answer is yes will follow from the
more general theorem we present now.

Theorem 4.19 (open mapping theorem). Let X,Y be a Banach space and
T : X ! Y a bounded operator. Then the following are equivalent:

(1) T is surjective.
(2) T is open.
(3) (Qualitative solvability) For every y ∈ Y there exists a solution

u ∈ X to the equation Tu = y.
(4) (Quantitative solvability) There exists a constant C > 0 such that

for every y ∈ Y there exists a solution u ∈ X to the equation Tu = y
which obeys the bound ∥u∥X ⩽ C∥y∥Y .

Proof. It is clear that (1) and (3) are equivalent and that (4) implies (3).
We will first show that (2) and (4) are equivalent. If f is open there exists
ε > 0 s.t. B<ε(0) ⊂ T (B<1(0)). Now, for arbitrary y ∈ Y \ {0} we have
ε
2

y
∥y∥Y ∈ B<ε(0) so there exists x ∈ B<1(0) with Tx = ε

2
y

∥y∥Y . Then, for
u := 2∥y∥Y

ε x,

T (u) = T
(2∥y∥Y

ε
x
)
=

2∥y∥Y
ε

T (x) = y

and ∥u∥ ⩽ C∥y∥Y for C := 2
ε .

Conversely, given (4) holds, for every y ∈ T (B<1(0)) we want to find
some δ > 0 s.t. B<δ(y) ⊂ T (B<1(0)). Let uy ∈ B<1(0) s.t. Tuy = y. Any
w ∈ B<δ(y) can be written as y + a with a ∈ B<δ(0) and there exists some
ua ∈ B<1(0) s.t. ∥ua∥X ⩽ C∥a∥Y < Cδ. Now we have

T (uy + ua) = T (uy) + T (ua) = y + a = w

and ∥uy + ua∥X < ∥uy∥X + Cδ, hence choose δ > 0 s.t. ∥uy∥X + Cδ < 1
(note that ∥uy∥X < 1).

It remains to show the main direction, namely (3) =⇒ (4). The proof is
taken from [Tao10] (page 99-100). For every n ⩾ 1, let En ⊂ Y be the set
of all y ∈ Y for which there exists a solution to Tu = y with ∥u∥X ⩽ n∥y∥Y .
From the hypothesis of (3), we see that

⋃
n⩾1En = Y so by (4) of Theorem

4.5 there exists some n0 s.t. En0 is dense in some ball B<r(y0). In other
words, the problem Tu = y is approximately quantitatively solvable in the
ball B<r(y0) in the sense that for every ε > 0 and every y ∈ B<r(y0)
there exists an approximate solution u ∈ En0 with ∥Tu − y∥Y ⩽ ε and
∥u∥X ⩽ n0∥Tu∥Y , and thus ∥u∥X ⩽ n0r + n0ε.
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By subtracting two such approximate solutions, we conclude that for any
y ∈ B<2r(0) and ε > 0, there exists u ∈ X with ∥Tu − y∥Y ⩽ 2ε and
∥u∥X ⩽ 2n0r + 2n0ε.

Since T is homogeneous, we can rescale and conclude that for any y ∈ Y
and any ε > 0 there exists u ∈ X with ∥Tu − y∥Y ⩽ 2ε and ∥u∥X ⩽
2n0∥y∥Y + 2n0ε.

In particular, setting ε = 1
4∥y∥Y (treating t he case y = 0 separately), we

conclude that for any y ∈ Y we may write y = Tu1 + y1, where ∥y1∥Y ⩽
1
2∥y∥Y and ∥u1∥X ⩽ 5

2n0∥y∥Y .
Iterating this procedure (in the second step with y1 in the role of y), we

find that in the nth step there exist u1, . . . , un with ∥uk∥X ⩽ 5
2k
n0∥y∥Y s.t.

y =
n∑
k=1

Tuk + yn = T

Å n∑
k=1

uk

ã
+ yn

with ∥yn∥Y ⩽ 1
2n ∥y∥Y .

Taking limits we see that
∑∞

n=1 un = u for some u ∈ X since
∑∞

n=1 ∥un∥X
converges and X is complete; u is a solution to Tu = y with ∥u∥X ⩽
5n0∥y∥Y , so the claim follows. ■
Corollary 4.20. Let T : V ! W be a bounded linear operator between
Banach spaces that is bijective. Then T−1 : W ! V is bounded.

Proof. T−1 : W ! V is well defined and by Theorem 4.19 T is open, hence
T−1 is continuous. ■
Corollary 4.21. Assume V is a vector space endowed with two norms
∥ · ∥1, ∥ · ∥2 s.t. (V, ∥ · ∥1) and (V, ∥ · ∥2) are Banach. Assume there exists
c > 0 s.t. ∥v∥2 ⩽ c∥v∥1 for all v ∈ V . Then there is C > 0 s.t.

∥v∥1 ⩽ C∥v∥2 ∀v ∈ V.

Proof. The identity map (V, ∥·∥1) ! (V, ∥·∥2), v 7! v is a bijective bounded
operator, hence the claim follows from (4) of Theorem 4.19. ■

Next we turn to a rather astonishing consequence of consequence of Corol-
lary 4.20.

Theorem 4.22 (closed graph theorem). Let T : V ! W be a linear map
between Banach spaces V,W . Assume that

Γ := {(v, Tv) : v ∈ V }
is closed in V ×W . Then T is bounded.

Remark 4.23. (1) The converse holds since W is Hausdorff.
(2) f : R ! R defined by

f(x) =

®
1
x , x ̸= 0

0, x = 0

has a closed graph, but is not continuous.
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Proof. V ×W with the norm ∥(v, w)∥ = ∥v∥V + ∥w∥W is a Banach space
and so is Γ, being the closed subspace of a Banach space. Observe that the
projections πV : V × W ! V and πW : V × W ! W are continuous and
linear. Now

πV |Γ : Γ ! V

is a continuous linear bijection, hence by Corollary 4.20 its inverse
(πV |Γ)

−1 : V ! Γ

is continuous as well. Since T = πW ◦ (πV |Γ)−1, it is continuous. ■

Remark 4.24. Let C ([0, 1]) and C1([0, 1]) both be endowed with the sup
norm ∥ · ∥b. The derivative

C1([0, 1]) ! C ([0, 1]), f 7! f ′

is a linear map and its graph is closed in C1([0, 1]) × C ([0, 1]) (this is a
formulation of the fact that if a sequence of functions (fn)n⩾1 converges
uniformly to f and also (f ′n)n⩾1 converges uniformly to some g, then f ′ ≡ g).
However, the derivative operator is not bounded. The closed graph theorem
was not applicable because C1([0, 1]) is not complete w.r.t. ∥ · ∥b.

4.5. Grothendieck’s theorem on closed subspaces of Lp

Here we present a quite non-trivial application of the closed graph theo-
rem, namely

Theorem 4.25. Let (X,A, µ) be a finite measure space, that is µ(X) <
+∞. Suppose that

(1) E is a closed subspace of Lp(X) for some 1 ⩽ p < +∞
(2) E ⊂ L∞(X).

Then E is finite dimensional.

Proof. Equipped with the Lp-norm, E is a Banach space. Let
I : E ! L∞(X)

be the identity map, I(f) = f for all f ∈ E. We claim that the graph
of I is closed: indeed assume fn ! f in Lp and fn ! g in L∞. There
exists a subsequence (fnk

)k⩾1 that converges a.e. to f and together with
the convergence in L∞ we can conclude that f = g a.e. By the closed graph
theorem there is M > 0 s.t. ∥f∥L∞(X) ⩽M∥f∥Lp(X) for all f ∈ E.

Claim. There exists A > 0 s.t. ∥f∥L∞(X) ⩽ A∥f∥L2(X) for all f ∈ E.
If 1 ⩽ p ⩽ 2 this follows from Hölder’s inequality,∫

X
|f |p dµ ⩽

Å∫
X
|f |2 dµ

ã p
2
Å∫

X
1 dµ

ã 2−p
2

= ∥f∥p
L2(X)

µ(X)
2−p
2

so in particular ∥f∥Lp(X) ⩽ ∥f∥L2(X)µ(X)
2−p
2p .
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Assume 2 < p < +∞ and notice that
|f(x)|p ⩽ ∥f∥p−2

L∞(X)|f(x)|
2

and integrating this inequality gives
∥f∥pLp(X) ⩽ ∥f∥p−2

L∞(X)∥f∥
2
L2(X).

We now use ∥f∥L∞(X) ⩽M∥f∥Lp(X) for all f ∈ E and deduce

∥f∥pLp(X) ⩽Mp−2∥f∥p−2
Lp(X)∥f∥

2
L2(X)

from which ∥f∥Lp(X) ⩽M
p−2
2 ∥f∥L2(X) for all f ∈ E follows.

Now we return to the proof of Theorem 5.25. Let f1, . . . , fn be an or-
thonormal set in E. If dim(E) ⩾ n such a set can be obtained by the
Gram-Schmidt orthogonalisation procedure. Let

B =

ß
s = (s1, . . . , sn) ∈ Cn :

n∑
j=1

|sj |2 ⩽ 1

™
.

be the unit ball in Cn and for every s ∈ B, let fs(x) =
∑n

j=1 sjfj(x). Then
∥fs∥L2(X) ⩽ 1 and by the claim we deduce ∥fs∥L∞(X) ⩽ A for all s ∈ B. So
for every s ∈ B there exists a measurable subset Xs ⊂ X with µ(Xs) = µ(X)
s.t. |fs(x)| ⩽ A for all x ∈ Xs. Let now {sj : j ⩾ 1} ⊂ B be a countable
dense subset of B and S :=

⋂
j⩾1Xsj . Then |fsj (x)| ⩽ A for all x ∈ S and

j ∈ N, and µ(S) = µ(X). But observe that for all x ∈ S, s 7! fs(x) is
continuous, and hence |fs(x)| ⩽ A for all x ∈ S and s ∈ B. From this, we
claim that

(∗)
n∑
j=1

|fj(x)|2 ⩽ A2

for x ∈ S. Indeed, we may assume that the left hand side is non-zero; then
if we let σ := (

∑n
j=1 |fj(x)|2)

1
2 and set sj := fj(x)/σ, |fs(x)| ⩽ A implies

1

σ

n∑
j=1

|fj(x)|2 ⩽ A

as we claimed. Finally integrating (∗) over X we find n ⩽ A2µ(X). ■

4.6. Complementary subspaces and a counterexample

First we show some geometric properties of closed subspaces in a Banach
space that follow from the open mapping theorem and then present and
elementary proof of the fact that c0(N) does not admit a closed complement
in ℓ∞(N).

Proposition 4.26. Let V be a Banach space and E,F two closed subspaces
of V s.t. E+F is closed. Then there exists C > 0 such that every z ∈ E+F
admits a decomposition z = e+f for e ∈ E, f ∈ F with ∥e∥V ⩽ C∥z∥V and
∥f∥V ⩽ C∥z∥V .
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Proof. E×F with the norm ∥(e, f)∥E×V = ∥e∥V +∥f∥V is a Banach space,
as well is E + F (with ∥ · ∥V ), being a closed subspace of a Banach space.
The map

E × F ! E + F, (e, f) 7! e+ v

is a surjective bounded linear operator. Hence, by (4) of Theorem 4.19, for
every z ∈ E + F there exists some (e, f) ∈ E × F s.t.

∥e∥V + ∥f∥V = ∥(e, f)∥E×F ⩽ C∥e+ f∥V = C∥z∥V .
■

Let V be a Banach space and E ⊂ V a closed subspace. We say that E
admits a closed complement if there is a closed subspace F ⊂ V s.t.

(1) E + F = V
(2) E ∩ F = {0}.

We know that if V is a Hilbert space then E⊥ is a closed complement of E.
A remarkable result of Lindenstrauss and Tzafriri says that if a Banach space
V has the property that every closed subspace admits a closed complement
then there is an equivalent norm on V coming from a scalar product.

Here We are going to limit ourselves to giving a concrete example. As
usual, let

ℓ∞(N) =
{
f : N ! C : ∥f∥ℓ∞(N) := sup

n∈N
|f(n)| < +∞

}
be the Banach space of bounded sequences and

c0(N) =
{
f : N ! C : lim

n!∞
f(n) = 0

}
the closed subspace of those converging to 0. Our objective is to show:

Theorem 4.27. c0(N) does not admit a closed complement in ℓ∞(N).

This elementary (but tricky) proof is due to R. Whitley [Whi66].
The strategy of the proof is the following: Assume R ⊂ ℓ∞(N) is a closed

complement of c0(N) in ℓ∞(N). Then the canonical projection π : ℓ∞(N) !
ℓ∞(N)/c0(N) restricted to R, i.e. π|R, is a bijective bounded operator of
Banach spaces, hence (π|R)−1 is bounded bijective. We are going to establish
two properties which will lead to a contradcition:

(1) There is D ⊂ R∗ countable s.t.
⋂
f∈D ker f = {0}.

(2) If D ⊂ (ℓ∞(N)/c0(N))∗ is any countable subset,
⋂
f∈D ker f ̸= {0}.

If now T : ℓ∞(N)/c0(N) ! R were any bounded bijective operator, and
D ⊂ R∗ countable with

⋂
f∈D ker f = {0}, then

{f ◦ T : f ∈ D} ⊂ (ℓ∞(N)/c0(N))∗

would be a countable subset with
⋂
f∈D ker(f ◦ T ) = {0}, contradicting (2).

The proof of (2) is based on the following counter-intuitive set theoretic
fact:
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Lemma 4.28. Let S be an infinite countable set. Then there is a family
{Ua : a ∈ A} of subsets of S s.t.

(1) Ua is infinite for all a ∈ A.
(2) Ua ∩ Ub is finite for all a ̸= b.
(3) A is uncountable.

Proof. We identify S with Q ∩ (0, 1) and A := (0, 1) \Q. For every a ∈ A
choose a sequence (xn)n⩾1 in S with limn!∞ xn = a and set Ua = {xn : n ⩾
1} ⊂ S. Then Ua is infinite since a ̸∈ Q; if a ̸= b ∈ S and xn ! a, yn ! b
we have for N large enough that xn ̸= ym for all n,m ⩾ N so that Ua ∩ Ub
is finite. Since A is uncountable this concludes the proof. ■

We can now prove Theorem 4.27.

Proof. Let us show properties (1) and (2).
(1) For all n ∈ N, define fn : ℓ∞(N) ! C, g 7! g(n). Then

|fn(g)| = |g(n)| ⩽ ∥g∥∞.

Futhermore, if g ∈
⋂
n⩾1 ker fn then g(n) = 0 for all n ∈ N. Hence

D := {fn|R : n ∈ N} ⊂ R∗

is finite and
⋂
n⩾1 ker fn|R = {0}.

(2) Apply Lemma 4.28 to S = N and let {Ua : a ∈ A} be a family of
subsets of N as in the lemma. For all a ∈ A define

fa := 1Ua + c0(N) ∈ ℓ∞(N)/c0(N).

Now, for λ ∈ (ℓ∞(N)/c0(N))∗ we claim that the set {a ∈ A : λ(fa) ̸= 0}
is countable; it suffices to show that the set

C(n) :=
{
a ∈ A : |λ(fa)| ⩾

1

n

}
is countable for every n ∈ N. Choose f1, . . . , fm ∈ C(n) and let

bk = sgn(λ(fk)) =
λ(fk)

|λ(fk)|
.

We will now proceed to show that f =
∑m

k=1 bkfk has unit norm. Of course,

f̃ :=
m∑
k=1

bk1Uak
∈ ℓ∞(N)

is a representative of the coset f . Letting F :=
⋃
k ̸=j(Uak∩Uaj ) we know that

F is finite so f̃1F ∈ c0(N) and f̃−f̃1F represents f . Thus ∥f∥ ⩽
∥∥f̃−f̃1F∥∥∞

and since (
f̃ − f̃1F

)
(x) =

®
bk, x ∈ Uak \ F
0, x ̸∈

⋃m
k=1(Uak \ F )
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it follows that
∥∥f̃ − f̃1F

∥∥
∞ = 1 so ∥f∥ ⩽ 1. From this we deduce

∥λ∥ ⩾ |λ(f)| =
m∑
k=1

|λ(fk)| ⩾
m

n

which shows that C(n) is finite. We have thus shown that {a ∈ A : λ(fa) ̸=
0} is countable. If now D = {λn : n ∈ N} ⊂ (ℓ∞(N)/c0(N))∗ is a countable
family then ⋃

n⩾1

{a ∈ A : λn(fa) ̸= 0} ⊂ A

is countable as well and hence
⋂
n⩾1 kerλn ̸= {0}. ■
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Chapter 5. Topological vector spaces, weak topologies, and the
Banach-Alaoglu theorem

In Analysis one encounters function spaces with a natural topology that
however cannot be described by a single norm: for example the space of
continuous functions on R with the topology of uniform convergence on
compact sets. Another problem one encounters is the fact that the unit
ball in an infinite dimensional Banach space is never compact. To remedi-
ate these problems we are going to study topological vector spaces whose
topology is given by a family of seminorms. On one hand this allows us to
study natural function spaces with tools of functional analysis; on the other
hand this will lead to weaker topologies on Banach spaces, thereby restoring
compactness in certain situations.

5.1. Basic Definitions and Examples

We begin by recalling Definition 1.4:

Definition 5.1. A topological vector space is a K-vector space V endowed
with a topology such that the maps

(1) K× V ! V, (λ, v) 7! λv
(2) V × V ! V, (v, w) 7! v + w

are continuous.

We draw the following useful conclusion:

Lemma 5.2. The two maps

Mλ : V ! V, v 7! λv

Lv : V ! V, w 7! v + w

are homeomorphisms.

Proof. Mλ is continuous with continuous left and right inverse Mλ−1 ; Lv is
continuous with continuous left and right inverse L−v. ■

We now turn to describe the topology on a K-vector space V generated
by a family of seminorms (see Definition 2.6).

Let V be a K-vector space and {∥ · ∥α : α ∈ A} a family of seminorms

∥ · ∥α : V ! [0,+∞)

on V . There is a priori no restriction on the cardinality of A. For all v ∈ V ,
F ⊂ A finite and r > 0 we let

N(v;F ; r) := {w ∈ V : ∥w − v∥α < r for all α ∈ F}.

Definition 5.3. Define U ⊂ V to be open if for all u ∈ U there exists a
finite F ⊂ A and r > 0 s.t. N(v;F ; r) ⊂ U .
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Clearly, ∅ and V are open w.r.t. to this definition, as well is the arbitrary
union of open sets. For finite intersections, note that

N(v;F1; r1) ∩N(v;F2; r2) = N(v;F1 ∪ F2;min{r1, r2})

is open. From this we conclude that finite intersections of open sets are
open.
Definition 5.4. The topology on V generated by the family of seminorms
{∥ · ∥α : α ∈ A} is the topology whose open subsets are given by Definition
5.3.
Lemma 5.5. The topology on V generated by the family of seminorms
{∥ · ∥α : α ∈ A} endows V with the structure of a topological vector space.
Proof. This follows from

λN(v;F ; r) = N(λv;F ; |λ|r)
and

N(v1;F1; r1) +N(v2;F2; r2) ⊂ N(v1 + v2;F1 ∩ F2; r1 + r2)

with a similar argument as given in Lemma 1.3. ■
Of course, if A = ∅ then the topology on V has exactly two open sets,

namely ∅ and V . The following property keeps degenerate cases away:
Definition 5.6. A family A of seminorms is sufficient if for all v ∈ V \ {0}
there exists some α ∈ A s.t. ∥v∥α ̸= 0.
Lemma 5.7. If A is sufficient then the topology generated by A is Hausdorff.
Proof. Indeed, if v1 ̸= v2 ∈ V then by sufficiency d := ∥v1 − v2∥α ̸= 0 for
some α ∈ A. Then N(v1;α;

d
2) and N(v2;α;

d
2) are two disjoint neighbour-

hoods of v1 and v2 resp. ■
A particularly important case is when we have a countable sufficient fam-

ily of seminorms.
Proposition 5.8. If {∥ · ∥n : n ∈ N} is a sufficient countable family of
seminorms on V , the generated topology is metrisable.
Proof. Since the family is sufficient, it is straightforward to verify that

d(v, w) :=
∞∑
n=1

1

2n

( ∥v − w∥n
1 + ∥v − w∥n

)
define a distance on V . Then observe that for all n, ℓ ⩾ 1:

1

2n

( ∥v − w∥n
1 + ∥v − w∥n

)
⩽ d(v, w) ⩽

ℓ∑
k=1

1

2k

( ∥v − w∥k
1 + ∥v − w∥k

)
+

1

2ℓ
.

From the second inequality we deduce that if 2−ℓ < ε, then
N(v; {∥ · ∥1, . . . ∥ · ∥ℓ; ε}) ⊂ B<2ε(v)
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(here B<r(v) refers to an open ball w.r.t. the metric d). Moreover, for ε ⩾ 1
and d(v, w) < ε

2n+1 the first inequality implies

1

2n

( ∥v − w∥n
1 + ∥v − w∥n

)
<

ε

2n+1

so (2− ε)∥v−w∥n < ε and hence ∥v−w∥n < ε. Thus, for all ε ⩾ 1 we have
B<ε2−(n+1)(v) ⊂ N(v; ∥ · ∥n; ε)

■

Example 5.9. Let X be a locally compact Hausdorff space. For every
compact subset K ⊂ X, define for all f ∈ C(X)

∥f∥K := sup
x∈K

|f(x)|.

Then {∥ · ∥K : K ⊂ X, compact} is a sufficient family of seminorms. We
have that fn ! f in this topology iff fn converges to f uniformly on ev-
ery compact subset. Observe that if X is a metric space s.t. B⩽n(x0) is
compact for all n ⩾ 0, then setting Kn := B⩽n(x0), the countable family
{∥ · ∥Kn}n⩾0 of seminorms induces the same topology on C(X), which is
therefore metrisable.

Example 5.10. Let (X,F , µ) be a triple consisting of a locally compact
Hausdorff space X, µ a positive Borel regular measure on X and F the
σ-algebra of µ-measurable sets. Define
Lploc(X) := {f : X ! C measurable : ∀K ⊂ X compact, f1K ∈ Lp(X)}.

Then ∥f∥Lp(X),K := ∥f1K∥Lp(X), for K ⊂ X compact, defines a sufficient
family of seminorms. Observe that if X is a countable union of compact
sets, the topology on Lploc(X) is metrisable.

There are many more examples of space of functions on Rn where the
seminorms take into account some local boundedness or local integrability
on derivatives.

Let V,W be topological vector spaces defined by families of seminorms
{∥ · ∥Vα : α ∈ A}, {∥ · ∥Wβ : β ∈ B}

respectively. Analogous to Theorem 1.18 we have a characterisation of con-
tinuous linear maps T : V !W .

Proposition 5.11. For a linear maps T : V !W the following are equiva-
lent:

(1) T is continuous
(2) T is continuous at 0
(3) For all finite F ⊂ B there exists some finite G ⊂ A s.t. for all β ∈ F :

sup
{
∥T (x)∥Wβ : max

α∈G
∥x∥Vα ⩽ 1

}
< +∞
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Proof. To see why (2) implies (1) we can apply the same argument as in
the proof of Theorem 1.18 which is valid for all topological vector spaces.

(2) =⇒ (3) Let F ⊂ B be finite. Since N(0;F ; 1) is an open neigh-
bourhood of T (0) we can find some finite set G ⊂ A and ε > 0 s.t.
T (N(0;G; ε)) ⊂ N(0;F ; 1) so that

T (N(0;G; 1)) = T
(1
ε
N(0;G; ε)

)
=

1

ε
T (N(0;G; ε))

⊂ 1

ε
N(0;F ; 1) = N(0;F ; 1/ε).

Taking closures the statement follows.
(3) =⇒ (2) Let N(0;F ; r) with F ⊂ B finite and r > 0 be arbitrary.

Moreover, let G ⊂ A be s.t.

C := sup
{
∥T (x)∥Wβ : max

α∈G
∥x∥Vα ⩽ 1

}
< +∞

i.e. T (N(0;G; 1)) ⊂ N(0;F ;C). Then T (N(0;G; r/C)) ⊂ N(0;F ; r) as
desired. ■
Corollary 5.12. A linear form f : V ! K is continuous iff there exists
G ⊂ A finite such that:

sup
{
|f(x)| : max

α∈G
∥x∥Vα ⩽ 1

}
< +∞

Proof. This follows immediately from the previous proposition applied to
W = K and the topology on K generated by the seminorm (actually a
norm) | · | which coincides with the topology induced by the norm | · |. ■

Given a topological vector space V (abbreviated TVS from now on), we
denote by V ∗ the vector space of all continuous linear forms V ! K. We
then have:

Theorem 5.13 (Hahn-Banach). Let V be a TVS given by a sufficient family
{∥ · ∥α : α ∈ A} of seminorms. Then for all v ∈ V \ {0} there exists some
F ∈ V ∗ with F (v) ̸= 0.

Proof. Let v ∈ V \ {0} and α ∈ A with ∥v∥α ̸= 0. We apply Theorem 2.7
to the seminorm ∥ · ∥α, the subspace M = Kv and the linear form

f : Kv ! K, f(λv) = λ∥v∥α
to obtain a linear extension F : V ! K satisfying |F (w)| ⩽ ∥w∥α for all w ∈
V . By Corollary 5.12, F ∈ V ∗ and by construction F (v) = f(v) = ∥v∥α. ■

5.2. Weak Topologies

When (V, ∥ · ∥V ) is a normed space and (V ∗, ∥ · ∥V ∗) its dual we will use
the tools from Section 5.1 and use suitable families of seminorms to define
new TVS structures on V and V ∗ that have ”fewer” open sets than the
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corresponding norm topologies. In fact, we will apply this construction to
any TVS V and its dual V ∗, and characterise the resulting topologies as
initial topologies.

Definition 5.14. Let V be a TVS.
(1) The σ(V, V ∗)-topology on V is the topology defined by the family of

seminorms {∥ · ∥λ : λ ∈ V ∗} where ∥v∥λ := |λ(v)| for all v ∈ V . It is
often referred to as the weak topology on V .

(2) The σ(V ∗, V )-topology on V ∗ is the topology defined by the family
of seminorms {∥ · ∥v : v ∈ V } where ∥f∥v := |f(v)| for all v ∈ V ∗. It
is often referred to as the weak∗topology on V ∗.

Lemma 5.15. (1) The family of seminorms defining the σ(V ∗, V ) topol-
ogy on V ∗ is sufficient.

(2) If V is a TVS defined by a sufficient family of seminorms then the
family of seminorms defining the σ(V, V ∗) topology on V is sufficient.

Thus, the weak∗ topology on V ∗ is always Hausdorff, and if V has a
sufficient family of seminorms. the weak topology on V is Hausdorff.

Proof. (1) If f ∈ V ∗ \ {0} then there is some v ∈ V with f(v) ̸= 0, hence
∥f∥v ̸= 0.

(2) This follows from Theorem 5.13 which guarantees the existence of
some f ∈ V ∗ with f(v) ̸= 0.

Lastly, according to Lemma 5.7, topologies induced by a sufficient family
of seminorms are Hausdorff. ■

We now turn to a very useful way of characterising weak and weak∗ toplo-
gies by putting them into the larger framework of initial topology , a concept
of wide ranging applications.

Let X be a set and F = {(φj , Yj) : j ∈ J} a set of pairs (φj , Yj) where Yj
is a topological space and φj : X ! Yj a map. The task is now to find the
most ”economical” topology on X making all these maps continuous. Of
course the discrete topology on X would do the job, but we want the one
with the ”least number” of open subsets. Let then T ⊂ 2X be a topology
for which the above maps are continuous. Then for all j ∈ J , if Uj ⊂ Yj is
open, we must have φ−1

j (Uj) ∈ T . Let then

S1 := {φ−1
j (Uj) : Uj ⊂ Yj open, j ∈ J}.

This is not necessarily a topology as it does not necessarily contain all the
finite intersections or arbitrary unions of members of S1. Let S2 be the set
containing all finite intersections of elements in T1 and let TF be the set of
arbitrary unions of elements in U2. Then TF ⊂ T and

Lemma 5.16. TF is a topology.
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Proof. It is clear that ∅ and X are in TF and that it is stable under
arbitrary unions. For finite intersections, let U1, U2 ∈ TF and write

U1 =
⋃
α∈A

Vα, U2 =
⋃
β∈B

Wβ

where Vα and Wβ are in S2. Then, by definition of S2, we can write

Vα =

nα⋂
j=1

φ−1
j (Vj,α), Wβ =

nβ⋂
k=1

φ−1
k (Wk,β)

for subsets Vj,α and Wk,β open in Yj respectively Yk. Now

U1 ∩ U2 =

Å⋃
α∈A

Vα

ã
∩
Å⋃
β∈B

Wβ

ã
=

⋃
α∈A
β∈B

(Vα ∩Wβ)

and since Vα and Wβ are in S2, so is their intersection. By definition of TF ,
the arbitrary union of sets in S2 is in TF , concluding the proof. ■

Definition 5.17. TF is called the initial topology defined by the family
F = {(φj , Yj) : j ∈ J}.

Example 5.18. Let {Yj}j∈J be a family of topological spaces, X =
∏
j∈J Yj

the (set theoretic) cartesian product and πj : X ! Yj the projection onto
the jth coordinate. Then the product topology on X is the initial topology
w.r.t. the family {(πj , Yj)}j∈J .

Now, let TF be the initial topology onX given by a family F = {(φj , Yj)}j∈J .
The following two lemmas are quite useful:

Lemma 5.19. Let Z be a topological space. A map ψ : Z ! X is continuous
iff for all j ∈ J the map φj ◦ ψ : Z ! Yj is continuous.

Proof. If ψ is continuous then so is φj ◦ ψ, being the composition of con-
tinuous functions. Conversely, if φj ◦ ψ is continuous for all j ∈ J we know
that

(φj ◦ ψ)−1(Uj) = ψ−1(φ−1
j (Uj))

is open for all open sets Uj ⊂ Yj . Since the φ−1
j (Uj) are somewhat the

atoms of TF , we can use the definition of TF together with the fact that
φ−1 : 2X ! 2Z commutes with unions and intersections to conclude that
ψ−1(U) is open for arbitrary open sets U ∈ TF . ■

Lemma 5.20. A net (xα)α∈A in X converges to x ∈ X iff (φj(xα))α∈A
converges to φj(x) for all j ∈ J .

Proof. The necessary direction follows from the fact that φj is continuous
for all j ∈ J . For the converse, suppose that for a given net (xα)α∈A there
exists some x ∈ X s.t. φj(xα) ! φj(x) for all j ∈ J . Let U ⊂ X be
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some arbitrary open neighbourhood of x. By definition of TF there exist
W1, . . . ,Wm with Wk ⊂ Yk s.t.

x ∈
m⋂
k=1

φ−1
k (Wk) ⊂ U.

For every 1 ⩽ k ⩽ m we find a corresponding βk s.t. φk(xα) ∈ Wk for all
α ⩾ βk. Since A is a directed set, every two elements have an upper bound
so inductively every finite subset has an upper bound. Hence we set β to
be some upper bound of {β1, . . . , βk} so that for all α ⩾ β we have for all
1 ⩽ k ⩽ m that φk(xα) ∈ Wk, in particular xα ∈ φ−1

k (Wk). We conclude
that xα ∈

⋂m
k=1 φ

−1
k (Wk) ⊂ U for α ⩾ β. ■

Now let us return to a vector space V over K and a family of seminorms {∥·
∥α}α∈A. Let T be the topology on V generated by this family of seminorms
and TF the initial topology on V associated to F = {(x 7! ∥x−v∥α,K) : v ∈
V, α ∈ A}.
Proposition 5.21. T = TF .
Proof. By construction of T , all seminorms ∥ · ∥α : V ! K are continuous.
Moreover, since (V, T ) is a TVS we also know that addition of vectors is
continuous, so in particular x 7! ∥x − v∥α is continuous for all v ∈ V and
all α ∈ A. Hence T ⊃ TF .

For the other inclusion, let v ∈ V , α ∈ A and r > 0. Then
N(v;α; r) = {x ∈ V : ∥x− v∥α < r} = [x 7! ∥x− v∥α]−1((−r, r))

so N(v;α; r) is open with respect to TF , concluding the proof. ■
Corollary 5.22. Let V be a TVS generated by a family of seminorms and
V ∗ its dual.

(1) The σ(V, V ∗) topology on V is the initial topology for the family
F = {(λ,K)}λ∈V ∗ .

(2) The σ(V ∗, V ) topology is the initial topology for the family {(J(v),K)}v∈V
where J(v) : V ∗ ! V, λ 7! λ(v).

Proof. (1) We already know that every f ∈ V ∗ is continuous w.r.t. σ(V, V ∗).
For the converse, using the previous proposition we know that σ(V, V ∗) is
equal to the topology generated by
{(x 7! ∥x− v∥λ,K) : v ∈ V, λ ∈ V ∗} = {(x 7! |λ(x)− λ(v)|,K) : v ∈ V, λ ∈ V ∗}.
Now for all v ∈ V and all λ ∈ V ∗ the function V ! R, x 7! |λ(x)− λ(v)| is
continuous w.r.t. the initial topology generated by {(λ,K)}λ∈V ∗ , being the
composition of continuous functions. This shows the other inclusion.

(2) Analogous argument. ■
We deduce from Lemma 5.19 and 5.20 in combination with Corollary 5.22:

Corollary 5.23. (1) A map ψ : Z ! V is continuous for the σ(V, V ∗)
topology iff f ◦ ψ : Z ! K is continuous for all f ∈ V ∗.
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(2) A map ψ : Z ! V ∗ is continuous for the σ(V ∗, V ) topology iff z 7!
ψ(z)(v) is continuous for all v ∈ V .

(3) A sequence (xn)n⩾1 converges in σ(V, V ∗) to x iff f(xn) ! f(x) for
all f ∈ V ∗.

(4) A sequence (fn)n⩾1 converges in σ(V ∗, V ) to f iff fn(v) ! f(v) for
all v ∈ V .

5.3. Normed spaces and the Banach Alaoglu Theorem

Let us now turn to a normed space (V, ∥ · ∥V ) and recall that its dual
(V ∗, ∥ · ∥V ∗) is a Banach space (cf. Proposition 1.22). We will often refer to
the norm topologies as strong topologies, to the σ(V, V ∗) topology on V as
the weak topology and the σ(V ∗, V ) topology on V ∗ as the weak∗ topology.

(1) and (2) of Corollary 5.23 have the following consequences:
Proposition 5.24. Let T : V !W be a bounded linear operator of normed
spaces (V, ∥ · ∥V ), (W, ∥ · ∥W ) and T ∗ : W ∗ ! V ∗ its adjoint.

(1) T is continuous for the weak topologies on V and W .
(2) T ∗ is continuous for the weak∗ topologies on W ∗ and V ∗.

As a consequence of the closed graph theorem we have the following con-
verse to (1) of Proposition 5.24:

Proposition 5.24∗. Let T : V ! W be a linear map between Banach
spaces V and W . Assume T is continuous for the weak topologies on V and
W . Then T is bounded.
Proof. Since graph(T ) is weakly closed, it is strongly closed, hence the
conclusion follows from the closed graph theorem (cf. Theorem 4.22). ■

Now let (V, ∥ · ∥V ) be a normed space and (V ∗, ∥ · ∥V ∗) its dual. Of course
every weakly open set is strongly open and the same applies to V ∗ with its
weak∗ topology. Now if F ⊂ V ∗ is finite and ε > 0 then

N(0;F ; r) = {w ∈ V : |f(w)| < c for all f ∈ F}
contains the subspace

⋂
f∈F ker(f) which is of finite codimension in V . Thus,

if V is infinite dimensional, the strong open ball B<ε(0) is not weakly open
and the same observation applies to V ∗.

We have, however, the following:
Proposition 5.25. (1) B⩽r(0;V ) is weakly closed.

(2) B⩽r(0;V
∗) is weakly∗ closed.

Proof. (1) Recall that for all v ∈ V Corollary 2.10 tells us
∥v∥V = sup{|f(v)| : ∥f∥ ⩽ 1}

and hence ∥v∥V ⩽ r iff |f(v)| ⩽ r for all f ∈ B⩽1(0;V ). Thus,

B⩽r(0;V ) =
⋂

f∈B⩽1(0;V
∗)

{v ∈ V : |f(v)| ⩽ r}
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and hence is weakly closed.
(2) Analogous argument. ■

Example 5.26. Let H be a separable infinite dimensional Hilbert space and
{en}n⩾1 an orthonormal basis. Then limn!∞ en = 0 is the weak topology.

Indeed, recall that every f ∈ H∗ is given by f(v) = ⟨v, w⟩ for some
w ∈ H (Riesz Representation Theorem). We apply the convergence criterion
of (3) of Proposition 5.23: Let x =

∑∞
n=1 xnen with

∑∞
n=1 |xn|2 < +∞.

Then ⟨en, x⟩ = xn and hence limn!∞⟨en, x⟩ = 0. Thus, we see that while
B⩽1(0;H) is weakly closed, the unit sphere

S1 = {v ∈ H : ∥v∥H = 1}

is not.

Example 5.27 (Compare with 2.16). Let X be a compact Hausdorff space
and C(X,R) the Banach space of continuous functions f : X ! R with the
norm ∥f∥b := supx∈X |f(x)|.

Let M(X,R) be the space of signed regular Borel measures on X. Then
the R-version of the Riesz representation theorem gives a bijection

R : M(X,R) ! C(X,R)∗, µ! Φµ

where

Φµ(f) =

∫
X
f dµ

and ∥Φµ∥ = |µ|(X); here |µ| is the total variation measure of µ. Thus R
is a bijective isometry between the Banach space (M(X,R), ∥ · ∥) (whereby
∥µ∥ := |µ|(X)) and the Banach space C(X,K)∗, the dual of C(X,R). The
weak∗ topology on C(X,R)∗ gives via R a topology on M(X,R) which coin-
cides with the initial topology associated to F = {(J(f),R) : f ∈ C(X,R)},
whereby

J(f)(µ) =

∫
X
f dµ.

The unit ball in M(X,R) is then given by

M⩽1 :=

ß
µ ∈M(X,R) :

∣∣∣∣∫
X
f dµ

∣∣∣∣ ⩽ 1 for all f ∈ C (X,R) with ∥f∥b ⩽ 1

™
.

In it there is a particularly interesting subset, namely the space of probability
measures on X,

M1(X) := {µ : µ is a positive regular Borel measure on X, µ(X) = 1}

=

ß
µ ∈M(X,R) :

∫
X
f dµ ⩾ 0 whenever f ⩾ 0 and

∫
X
1 dµ = 1

™
.

It is thus a convex weakly∗ closed subset of the unit ball M⩽1.



62

Example 5.28. LetX = [0, 1], λ the Lebesgue measure such that λ([0, 1]) =
1 and δ0 the Dirac measure at 0. Then δ0 ∈ M1(X) and µn := nλ1[0,1/n] ∈
M1(X) for all n ⩾ 1. For every f ∈ C([0, 1],R) we have∫

X
f dµn = n

∫ 1/n

0
f(x) dλ(x) ! f(0) =

∫
X
f dδ0

since ∣∣∣∣∫ 1/n

0
n(f(x)− f(0)) dλ(x)

∣∣∣∣ ⩽ n

∫ 1/n

0
sup

y∈[0,1/n]
|f(y)− f(0)| dλ(x)

= sup
x∈[0,1/n]

|f(y)− f(0)| ! 0

by continuity of f . Thus, µn ⇀ δ0 weakly∗.

Now we turn to the central result of this chapter:

Theorem 5.29 (Banach-Alaoglu). Let V be a normed space. Then the
unit ball B⩽1(0;V

∗) in V ∗ is weakly∗ compact.

Proof. For the ease of notation, let us write B∗ := B⩽1(0;V
∗) and B :=

B⩽1(0;V ). Note that for any λ ∈ B∗ we have λ(B) ⊂ {z ∈ K : |z| ⩽ 1} =: D
so one can identify1 B∗ with a subset of DB =

∏
v∈B D which is the space

of functions from B to D (we will also write B∗ for this identification).
Note that by Corollary 5.22 we know that the weak∗ topology on B∗ is
the initial topology w.r.t. the family {([λ 7! λ(v)],K)}v∈B which we can
also write as {(πv|B∗ , D)}v∈B; here πv : DB ! D is the projection onto the
”vth coordinate”. But note that the product topology on DB is the initial
topology w.r.t. the family {(πv, D)}v∈B, so we find that the weak∗ topology
on B∗ is just the product topology on DB restricted to B∗.

Due to Tychonoff’s Theorem we know that DB is compact w.r.t. the
product topology, so all that remains is to show that B∗ is closed in DB.
Let (λα)α∈A ⊂ B∗ be a net converging to f ∈ DB; we have to show that f
is linear and thus again an element of B∗. For arbitrary v, w ∈ B we have
λα(v + w) = λα(v) + λα(w) so by continuity of addition in K we get that
λα(v)+ λα(w) converges to f(v)+ f(w), as desired. Same applies to λα(cv)
for some scalar c ∈ K.

■
Remark 5.30. Even if V is a Banach space, the closed unit ball B⩽1(0;V ) is
not necessarily compact in the weak topology. In fact a theorem of Kakutani
asserts that B⩽(0;V ) is weakly compact iff V is reflexive, that is iff the linear
isometry J : V ! V ∗∗ from Proposition 2.12 is surjective.

1This can be achieved by considering the canonical injection
Ψ: B∗ ↪! DB , λ 7! (λ(v))v∈B

which can be turned into a homeomorphism (w.r.t. the weak∗ topology) via ‹Ψ: B∗ !
Ψ(B∗), λ 7! Ψ(λ).
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One of the important consequences of Banach-Alaoglu in the context of
Example 5.27 is the following:

Corollary 5.31. Let X be a compact Hausdorff space. Then the space
M1(X) of probability measures on X is weakly∗ compact.

Proof. Is it a weakly∗ closed subset of the unit ball M⩽1. ■

Remark 5.32. An equivalent formulation is: the space M1(X) equipped
with the initial topology associated to the family F = {(f,R) : f ∈ C(X !
R)} is compact.

We end this chapter with a construction that will bear its fruits in the
next chapter.

Let X be a compact Hausdorff space and ψ : X ! X a homeomorphism.
Then ψ gives rise to a linear map:

λ(ψ) : C(X) ! C(X), f 7! f ◦ ψ−1.

Then the following two properties are immediate:
(1) ∥λ(ψ)(f)∥b = ∥f∥b for all f ∈ C(X)
(2) λ(ψ1 ◦ ψ2) = λ(ψ1) ◦ λ(ψ2).

In particular λ(ψ) is a bijective isometry of C(X) with inverse λ(ψ−1).
Moreover, its adjoint λ(ψ)∗ : C(X)∗ ! C(X)∗ is a bijective isometry (ex-

ercise 9 and (2) of Proposition 5.24 imply that λ(ψ)∗ is weakly∗ continuous).
Now by (2) and properties of adjunction we have:

λ(ψ1 ◦ ψ2)
∗ = (λ(ψ1)λ(ψ2))

∗ = λ(ψ2)
∗λ(ψ1)

∗

which leads us to define:

λ∗(ψ) := (λ(ψ)∗)−1.

This way we recover:

λ∗(ψ1 ◦ ψ2) = λ∗(ψ1)λ
∗(ψ2).

Now, coming back to Example 5.27, let us compute λ∗(ψ) under the
identification:

M(X) ! C(X)∗, µ! Φµ.

We have λ∗(ψ)(Φm) = Φν and proceed to compute ν. One has

λ∗(ψ)(Φµ)(f) = (λ(ψ)∗)−1︸ ︷︷ ︸
λ(ψ−1)∗

(Φµ)(f)

= Φµ(λ(ψ
−1)(f))

= Φµ(f ◦ ψ) =
∫
X
f ◦ ψ(x) dµ(x)

and Φν(f) =
∫
X f(y) dµ(y).
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Thus we have that for all f ∈ C(X)∫
X
f(y) dν(y) =

∫
X
f ◦ ψ(x) dµ(x).

Now let for every Borel set E ⊂ X,
ν ′(E) = µ(ψ−1(E)).

Then ν ′ is a signed regular Borel measure denoted ψ∗µ and called the push-
forward of the measure µ by ψ. Clearly,

ν ′(E) =

∫
X
1ψ−1(E) dµ(x) =

∫
Ω
1E ◦ ψ(x) dµ(x)

which by using step functions and the monotone convergence theorem im-
plies (cf. Theorem 8.3)∫

X
f(y) dν ′(y) =

∫
X
f(ψ(x)) dµ(x)

for all f ∈ C(X). Hence v′ = v, i.e.
λ∗(ψ)(Φµ) = Φψx(µ).

Finally we observe from this that for all homeomorphisms ψ : X ! X,
λ∗(ψ)(M ′(X)) =M ′(X).

An interesting point is, that this construction can be generalised in the
following way: let ψ : X ! Y be a continuous map of compact Hausdorff
spaces and µ ∈M(X). Then, for Borel sets E ⊂ Y ,

(ψ∗µ)(E) := µ(ψ−1(E))

defines an element ψ∗µ ∈M(Y ) and
(1) M(X) !M(Y ), µ! ψ∗µ is weakly∗ continuous.
(2) ψ∗(M

′(X)) ⊂M ′(Y ).
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Chapter 6. Convexity; the Kakutani-Markov Fixed Point
Theorem, and Krain-Milman

This chapter has three interrelated Thema. First, we will exploit the
analytic form of Hahn-Banach to establish separation properties of convex
sets in TVS whose topology in generated by a family of seminorms. Then
we establish a general fixed point theorem (Kakutani-Markov) that has far
reaching consequences; for instance, it implies that any homeomorphism of
a compact Hausdorff space has an invariant probability measure. Finally,
we establish a very geometric result on compact convex subsets of a TVS
generated by a sufficient family of seminorms that says one can recover it
from its subset of extreme points. Applied to a homeomorphism of a compact
Hausdorff space it implies the existence of an ergodic invariant probability
measure. Unless otherwise specified, all vector spaces in this chapter are
over R.

6.1. Convexity

Let V be an R-vector space.

Definition 6.1. A subset K ⊂ V is convex if for all v, w ∈ K the vector
(1− t)v + tw is again in K for all t ∈ [0, 1].

Example 6.2. Let p : V ! R be a gauge. Recall that this means
(1) p(λv) = λp(v) for all λ > 0 and all v ∈ V .
(2) p(v1 + v2) ⩽ p(v1) + p(v2) for all v1, v2 ∈ V .

Then for all r ∈ R,
P<r := {v ∈ V : p(v) < r}

is convex. Indeed, for v1, v2 ∈ P<r and t ∈ (0, 1) we have
p((1− t)v1 + tv2) ⩽ p((1− t)v1) + p(tv2)

= tp(v1) + (1− t)p(v2)

< tr + (1− t)r = r.

This clearly extends to t = 1 and t = 0. The same argument shows that if
one replaces < in the definition of P<r by ⩽ the corresponding subset is as
well convex.

This process can be reversed for convex subsets with additional properties.

Definition 6.3. A subset A ⊂ V is absorbent if for all v ∈ V there exists
α > 0 s.t. for all |λ| ⩾ α we have v ∈ λA.

Example 6.4. B⩽1(0) ⊂ R2 is absorbent.

Example 6.5. Let V be a TVS and U an open subset containing 0. Then
U is absorbent. Indeed, for arbitrary v ∈ V the map R ! V, t 7! tv is
continuous, in particular at t = 0. Hence there exists ε > 0 s.t. tv ∈ U for
all |t| ⩽ ε. Thus v ∈ λU for all |λ| ⩾ 1/ε.



66

The relationship between convex subsets and gauges is given by the fol-
lowing proposition.
Proposition 6.6. Let V be an R-vector space and A ⊂ V s.t.

(1) A convex
(2) 0 ∈ A
(3) A is absorbent.

Then
pA(v) := inf{α > 0: v ∈ αA}

is a gauge on V . In addition:
(1) {x : pA(x) < 1} ⊂ A ⊂ {x : pA(x) ⩽ 1}
(2) If A ⊂ B and B satisfies (1), (2) and (3) then pB ⩽ pA.

Proof. Since A is absorbent, pA is well defined. First, for λ > 0 we have
pA(λv) = inf{α > 0: λv ∈ αA}

= inf
{
α > 0: v ∈ α

λ
A
}

= inf{λα > 0: v ∈ αA}

= λ inf{α > 0: v ∈ αA} = λpA(v).

For subadditivity, let v, w ∈ V . For any α, β > 0 s.t. v ∈ αA and w ∈ βA
we have

v

α+ β
+

w

α+ β
=

α

α+ β

v

α
+

β

α+ β

w

β
∈ A

employing convexity. Hence v+w ∈ (α+β)A, demonstrating subadditivity.
For (1), it is clear that {x : pA(x) < 1} ⊂ A due to convexity, since if

x ∈ αA for α < 1 we also have x ∈ A. Similarly, x ∈ A immediately implies
pA(x) ⩽ 1, showing the other inclusion. Property (2) is clear.

■
Example 6.7. Let V be a TVS defined by a family {∥·∥α}α∈A of seminorms,
and U = N(0, F, ε) where ε > 0 and F ⊂ A is finite. Let us compute pA:
we have for v ∈ V and λ > 0,

v ∈ λU ⇐⇒ v ∈ λN(0;F ; ε)

⇐⇒ max
α∈F

∥∥∥v
λ

∥∥∥
α
< ε

⇐⇒ max
α∈F

∥v∥α < λε

and hence pA(v) = 1
ε maxα∈F ∥v∥α.

With these tools at hand we can now prove:
Theorem 6.8. Let V be a TVS (over R) defined by a family of seminorms
{∥·∥α}α∈A. Let A ⊂ V be a nonempty open convex subset and v ̸∈ A. Then
there exists F ∈ V ∗ with F (a) < F (v) for all a ∈ A.
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Proof. Pick a0 ∈ A; then A′ := A − a0 is open, convex and 0 ∈ A′. Let
pA′ : V ! R be the associated gauge as in Proposition 6.6. Define M :=
R(v − a0) and

f : M ! R, λ(v − a0) 7! λ.

Since v − a0 ̸∈ A′ we have by Proposition 6.6 that pA′(v − a0) ⩾ 1. By
homogeneity of pA′ and linearity of f this implies f(w) ⩽ pA′(w) for all
w ∈ M . By Theorem 2.4 there exists a linear extension F : V ! R of f
with F (w) ⩽ pA′(w) for all w ∈ V .

Let us observe that since A′ is open we have A′ = {w ∈ V : pA′(w) <
1}. Indeed, the ⊃ inclusion follows from Proposition 6.6. For the reverse
inclusion let w ∈ A′. Since R ! V, t! tw is continuous and A′ open, there
exists an open neighbourhood U ⊂ A′ of w and ε > 0 s.t. (1− ε, 1 + ε)w ⊂
U ⊂ A′ and hence (1 + ε/2)w ∈ A′.

Thus F (a−a0) ⩽ pA′(a−a0) < 1 for all a ∈ A and F (v−a0) = f(v−a0) =
1. ■

With this at hand we can now show that one can separate points from
closed convex subsets.

Corollary 6.9. Let V be as in Theorem 6.8, A ⊂ V closed convex and
x ̸∈ A. Then there is α ∈ R and F ∈ V ∗ s.t. F (a) < α < F (x) for all a ∈ A.

Proof. Since A is closed and x ̸∈ A we can find an open neighbourhood U of
0 with (x+U)∩A = ∅. Let J be finite and ε > 0 s.t. N := N(0; J ; ε) ⊂ U .
Since N = −N we conclude from (x − N) ∩ A = ∅ that x ̸∈ A + N . Now
observe that

A+N =
⋃
a∈A

(a+N)

which is therefore open; it is also convex. By Theorem 6.8 there is F ∈ V ∗

s.t. for all a ∈ A and u ∈ N we have F (a + u) < F (x). Since F ̸= 0,
there exists v0 ∈ V with F (v0) ̸= 0 and since N is absorbent there is λ ̸= 0
with u0 := λv0 ∈ N . Thus, F (u0) ̸= 0 and exchanging u0 with −u0 if
necessary, we may assume F (u0) > 0. Hence F (a) + F (u0) < F (x) so with
α := F (x)− F (u0) we get F (a) < α < F (x) for all a ∈ A. ■

The simple example of A = B<1(0;R
2) and x ∈ R2 with ∥x∥ = 1 shows

that the condition that A is closed in the previous corollary, is important.
It is now time to turn to the concept of convex hull of a subset A ⊂ V in

an R-vector space.

Definition 6.10. The convex hull conv(A) of a subset A ⊂ E is the inter-
section of all convex subsets containing A.

Example 6.11. A triangle.

One shows by recurrence that if v1, . . . , vn belong to a convex set C then∑n
k=1 λkvk ∈ C whenever λ1, . . . , λn ∈ R⩾0 with

∑n
k=1 λk = 1.
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This leads to the following formula for the convex hull of a subset A ⊂ V :
Let

R
(S)
⩾0 := {λ : S ! R⩾0 : λ has finite support}.

Then

conv(A) =

ß∑
a∈A

λ(a)a : λ ∈ R
(A)
⩾0 ,

∑
a∈A

λ(a) = 1

™
.

Indeed, that conv(A) contains the right hand side follows from the above
remark while the reversed inclusion follows from the fact that the right hand
side is convex, as the following computation shows: For all λ, γ ∈ R

(A)
⩾0 and

t ∈ [0, 1] we have

t
∑
a∈A

λ(a)a+ (1− t)
∑
a∈A

γ(a)a =
∑
a∈A

(tλ(a) + (1− t)γ(a))a

and ∑
a∈A

(tλ(a) + (1− t)γ(a)) = t+ (1− t) = 1.

The following generalises Proposition 5.25.

Proposition 6.12. Let (V, ∥ · ∥V ) be a normed vector space and C ⊂ V
convex. Then C is strongly closed iff it is weakly closed.

Proof. If C is weakly open it is strongly open, hence weakly closed implies
strongly closed.

For the converse, assume that C ⊂ V is strongly closed; let us show that
V \ C is weakly open. Let x0 ̸∈ C; by Corollary 6.9 there is α ∈ R and
F ∈ V ∗ with

F (c) < α < F (x0)

for all c ∈ C. Thus {v ∈ V : F (v) > α} is weakly open, contains x0 and is
disjoint from C. ■

To proceed further we consider the following lemma.

Lemma 6.13. Let V be a TVS. Then the closure C of a convex subset
C ⊂ E is convex.

Proof. For t ∈ [0, 1] we have
(1− t)C + tC = (1− t)C + tC ⊂ ((1− t)C + tC) ⊂ C

using convexity of C. We have used that for X,Y ⊂ V and t ∈ K, V a TVS
over K, one has tX = tX and X + Y ⊂ X + Y which follows immediately
from continuity of multiplication by a scalar and vector addition.

For example, if x ∈ X and y ∈ Y are limit points of X respectively Y ,
there exist nets (xα)α∈A ⊂ X and (yβ)β∈B ⊂ Y converging to x resp. y.
By continuity of addition we have that xα + yβ converges to x+ y since the
sequence ((xα, yβ))(α,β)∈A×B converges to (x, y) (here A×B is endowed with
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(α, β) ⩽ (α′, β′) ⇐⇒ α ⩽ α′ ∧ β ⩽ β′ which naturally makes it a directed
set). ■

From the preceding lemma we deduce the following proposition.

Proposition 6.14. Let (V, ∥ · ∥V ) be a normed vector space and C ⊂ V a
convex subset. Then its closure C for the strong topology coincides with its
closure Cw for the weak topology.

Proof. Since Cw is weakly closed it is also strongly closed and since Cw ⊃ C
this implies Cw ⊃ C. Conversely, by Lemma 6.13, C is convex, meaning
since it is strongly closed it is also weakly closed (cf. Proposition 6.12) and
hence C ⊃ C

w. ■
Corollary 6.15. Let (V, ∥ · ∥V ) be a normed space and (vn)n⩾1 a sequence
s.t. vn ⇀ v weakly. Then there is a sequence wn ∈ conv({vn}n⩾1) s.t.
wn ! v strongly.

Proof. By Proposition 6.14, conv({vn}n⩾1) and conv({vn}n⩾1)
w coincide.

■
Another astonishing fact follows from the closed graph theorem and Propo-

sition 6.12.

Proposition 6.16. Let X,Y be Banach spaces and T : X ! Y a linear
map that is continuous for the weak topologies on X and Y . Then T is
bounded and the converse also holds.

Proof. ( ⇐= ) Follows from (1) of Proposition 5.24.
( =⇒ ) We use the closed graph theorem: graph(T ) ⊂ X × Y is weakly

closed and clearly convex. Hence it is strongly closed which implies T is
bounded. ■

6.2. The Markov-Kakutani fixed point theorem

Let V be a topological vector space.

Definition 6.17. An automorphism of V is a bijective continuous linear
map T : V ! V whose inverse T−1 : V ! V is continuous.

Then the set Aut(X) of automorphisms of X forms a group under com-
position.

Example 6.18. Let X be a compact Hausdorff space, V = M(X) the
space of signed regular Borel measures with weak∗-topology. In Chapter
5 we constructed a group homomorphism λ∗ : Homeo(X) ! Aut(E) which
takes the concrete form

λ∗(ψ)(µ) = ψ∗(µ).

We observed that the weakly∗-compact convex subset M1(X) of probability
measures is invariant under λ∗(ψ) for all ψ ∈ Homeo(X).
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Example 6.19. Let G be a group with discrete topology. A mean on G is
a continuous linear form γ ∈ ℓ∞(G)∗ s.t.

(1) γ(1G) = 1
(2) γ(f) ⩾ 0 for all f ∈ ℓ∞(G) with f ⩾ 0.

Then the set
m(G) = {γ ∈ ℓ∞(G)∗ : γ is a mean}

is a convex weakly∗ closed subset of the unit ball of ℓ∞(G)∗ and hence
compact.

Now for all g ∈ G and γ ∈ ℓ∞(G), let
λ(g)γ(x) := γ(g−1x).

Then
(1) ∥λ(g)γ∥ℓ∞(G) = ∥γ∥ℓ∞(G) for all g ∈ G and γ ∈ ℓ∞(G)
(2) λ(g1g2) = λ(g1)λ(g2).

Hence λ(g) : ℓ∞(G) is a bijective isometry. Its adjoint λ(g)∗ : ℓ∞(G)∗ !
ℓ∞(G)∗ is therefore weakly∗ continuous. Setting λ∗(g) := (λ(g)∗)−1 we
obtain a group homomorphism λ∗ : G! Aut(ℓ∞(G)∗). If m ∈ ℓ∞(G) then

(λ∗(g)m)(γ) = m(λ(g−1)γ).

Clearly, if m is a mean, λ∗(g)m is a mean for all g ∈ G. Thus the compact
convex subset m(G) is invariant under λ∗(g) for all g ∈ G.

Observe that if m ∈ m(G) we can define a set function µ : P(G) ! R⩾0

by µ(E) := m(1E). This set function has then the following properties:
(1) µ(G) = 1
(2) µ is finitely additive.

Theorem 6.20 (Markov-Kakutani). Let V be a TVS generated by a suf-
ficient family of seminorms, G an abelian group and π : G ! Aut(V ) a
homomorphism. Assume that A ⊂ V is compact, convex, nonempty and
G-invariant, that is π(g)(A) ⊂ A for all g ∈ G. Then there exists a point in
A that is fixed by π(g) for all g ∈ G.

Proof. For every g ∈ G and n ⩾ 1, define

Mn,g : V ! V, v 7!
1

n

n−1∑
k=0

π(gk)(v).

Then Mn,g is a continuous linear map and since A is convex and π(gk)(A) ⊂
A we have Mn,g(A) ⊂ A. Let

G∗ := {Mn1,g1 ◦ · · · ◦Mnℓ,gℓ : ℓ ⩾ 1, n1, . . . , nℓ ∈ N, g1, . . . , gℓ ∈ G}.
This is a family of continuous linear maps V ! V with the following prop-
erties:

(1) If T, S ∈ G∗ then T ◦ S ∈ G∗.
(2) T (A) ⊂ A for all T ∈ G∗.
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(3) If T, S ∈ G∗ then T ◦ S = S ◦ T .
To see (3) it suffices to show that Mn,a◦Mm,b =Mm,b◦Mn,a which follows

from a direct computation (using that G is abelian).
Claim:

⋂
T∈G∗ T (A) ̸= ∅.

We note that T (A) ⊂ A is compact for all T ∈ G∗ so that it is sufficient1

to show that for all T1, . . . , Tℓ ∈ G∗ we have
⋂ℓ
k=1 Tk(A) ̸= ∅.

We have that for all 1 ⩽ k ⩽ ℓ,
Tk(A) ⊃ Tk(T1 · · ·Tk−1Tk+1Tℓ)(A)

and since all Tj ’s commute we obtain
Tk(T1 · · ·Tk−1Tk+1Tℓ) = T1 · · ·Tℓ

and hence
ℓ⋂

k=1

Tk(A) ⊃ T1 · · ·Tℓ(A) ̸= ∅

which proves the claim.
Let now y ∈

⋂
T∈G∗ T (A). Then it follows that for all n ⩾ 1 and g ∈ G

there exists some xn,g ∈ A with Mn,g(xn,g) = y, i.e.

y =
1

n

n−1∑
k=0

π(gk)(xn,g).

It follows that

π(g)(y)− y =
1

n
(π(gn)(xn,g)− xn,g).

Now, let {∥·∥α}α∈A be the sufficient family of seminorms defining the topol-
ogy on V . Then for all a ∈ A,

∥π(g)(y)− y∥α ⩽ 1

n
(∥π(gn)(xn,g)∥α + ∥xn,g∥α).

Let Bα := supv∈A ∥v∥α < +∞, since A is compact. We conclude that

∥π(g)(y)− y∥α ⩽ 2Bα
n

for all n ⩾ 1, hence ∥π(g)(y)−y∥α = 0 for all α ∈ A. This yields π(g)(y) = y
for all g ∈ G. ■

In the context of Example 6.18 we obtain the following corollaries, which
we state in terms of group actions. Recall that a group action of a group G
on a set X is a map

G×X ! X, (g, x) 7! g∗x

satisfying the following axioms:
(1) e∗x = x for all x ∈ X.
(2) (g1g2)∗x = (g1)∗(g2)∗(x) for all g1, g2 ∈ G and all x ∈ X.
1Cf. Proposition 8.2, this is a characterisation of compactness.
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If X is a topological space, the group action is by homeomorphisms if for
all g ∈ G the map

ψg : X ! X, x 7! g∗x

is a homeomorphism.

Corollary 6.21. Let G × X ! X be an action by homeomorphism of
an abelian group G on a compact Hausdorff space X. Then there exists an
invariant probability measure, that is, there exists µ ∈M1(X) s.t. (ψg)∗µ =
µ for all g ∈ G.

Proof. We apply Theorem 6.20 to the space V = M(X) of signed regu-
lar Borel measures with weak∗ topology and the homomorphism π : G !
Aut(V ) obtained by composing

G −−! Homeo(X)
λ∗−−! Aut(V )

g 7−−! ψg 7−−! λ∗(ψg).

Then the weak∗ compact convex subset M1(X) is invariant under π(g) for
all g ∈ G and the corollary follows by invoking the just proven theorem. ■
Corollary 6.22. Let X be a compact Hausdorff space and ψ ∈ Homeo(X).
Then there exists µ ∈M1(X) with ψ∗(µ) = µ.

Proof. Apply the preceding corollary to the group action
Z×X ! X, (n, x) 7! ψn(x).

■
In the context of Example 6.19 we obtain the following corollary.

Corollary 6.23. Let G be an abelian group. Then there exists a mean
m ∈ m(G) that is invariant under λ∗(g) for all g ∈ G. In particular there
exist a set function µ : 2G ! [0, 1] with the properties

(1) µ(G) = 1
(2) µ is finitely additive
(3) µ(gE) = µ(E) for all g ∈ G and E ⊂ G.

This Corollary is the starting point of the theory of amenable groups: a
group G is amenable if there is a mean m ∈ m(G) that is invariant under
”left translations”, that is λ∗(g)m = m for all g ∈ G. Not all groups are
amenable; for instance, the free groups G = F(a, b) on two generators is not,
and this is intimately connected to the paradoxical decomposition mentioned
back, in Theorem [tbd., Chapter 2.2] (Banach-Tarski paradox).

Remark 6.24. The countable group G has property (F) if there exists a
sequence Fn ⊂ G of finite subsets s.t. for all g ∈ G

|gFn△Fn|
|Fn|

n!∞−−−! 0.
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Then one can shows hat the conclusion of Theorem 6.20 holds for any count-
able group G satisfying (F). In particular such a G is amenable; it is a
Theorem of Föllner that the converse holds.

Assume next that X is a compact Hausdorff space and ψ : X ! X is
a homeomorphism. We know now that there exist ψ-invariant probabil-
ity measures on X. The case where there is a unique such is particularly
interesting.

Theorem 6.25. Assume that there is a unique ψ-invariant probability mea-
sure µ on X. Then for all f ∈ C(X),

lim
n!∞

1

n

n−1∑
k=0

f(ψk(x)) =

∫
X
f dµ

the convergence being uniform in x ∈ X.

Proof. Let (nk)k⩾1 be a strictly increasing sequence in N and (xk)k⩾1 a
sequence in X. Define the sequence of probability measures,

µk :=
1

nk

nk−1∑
j=0

δψj(xk) ∈M1(X).

Let ν be any accumulation point of this sequence (w.r.t. weak∗ topology),
that is:

ν ∈
⋂
N⩾1

{µk : k ⩾ N}.

Then for all f ∈ C(X),

µk(f ◦ ψ)− µk(f) =
1

nk
(f(ψnk(xk))− f(xk))

and hence

|µk(f ◦ ψ)− µk(f)| ⩽
2∥f∥b
nk

which implies that ν is ψ-invariant.
(2) If the convergence in the theorem is not uniform, there is f ∈ C(X)

and ε > 0 s.t.

lim sup
n!∞

sup
x∈X

∣∣∣∣ 1n
n−1∑
k=0

f(ψk(x))−
∫
X
f dµ

∣∣∣∣ > ε.

Thus there is a strictly increasing sequence (nk)k⩾1 and a sequence (xk)k⩾1

in X with ∣∣∣∣ 1nk
nk−1∑
j=0

f(ψj(xk))−
∫
X
f dµ

∣∣∣∣ > ε

which by (1) would lead to a ψ-invariant probability measure ν ̸= µ. ■
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In specific situations it is relatively easy to establish uniqueness of the
ψ-invariant measure, as the following example shows.

Example 6.26. In the notations of Chapter 3 ”the problem of measure”,
we defined the probability measure λ ∈ M1(R/Z) which on continuous
functions f ∈ C(R/Z) is given by∫

R/Z
f dλ =

∫ 1

0
f(π(x)) dλ(x)

where π : R ! R/Z is the canonical projection and λ the Lebesgue measure
on R normalised s.t. λ([0, 1]) = 1. For α ∈ R/Z the map

Tα : R/Z ! R/Z, x 7! x+ α

is a homeomorphism. For α ∈ Q/Z, let α = p/q + Z where p, q ∈ N are
coprime. Then (Tα)

q = idR/Z and for all x ∈ R/Z,

µx :=
1

q

q−1∑
k=0

δTk
α(x) ∈M1(R/Z)

is an Tα-invariant probability measure; of course, λ itself is Tα-invariant
for all α ∈ R/Z. The point is then that for α ̸∈ Q/Z, λ is the unique
Tα-invariant probability measure. As a result we get from Theorem 6.25

1

n

n−1∑
k=0

f(x+ kα) !

∫
R/Z

f dλ

uniformly for all f ∈ C(R/Z).

6.3. Extreme points and the Krein-Milman Theorem

Let V be an R-vector space. For x, y ∈ V we define
[x, y] = {(1− t)x+ ty : t ∈ [0, 1]}
(x, y) = {(1− t)x+ ty : t ∈ (0, 1)}

so for example (x, x) = {x}.

Definition 6.27. Let A ⊂ V be a convex subset.
(1) x ∈ A is an extreme point of A if x ∈ (y, z) with y, z ∈ A implies

x = y = z.
(2) A convex subset B ⊂ A is extreme in A if (y, z) ∩ B ̸= ∅ with

y, z ∈ A implies [y, z] ⊂ B.

For example, the extreme points of a triangle are its corners and its ex-
treme sets are the entire Triangle, the edges and corners.

Theorem 6.28. Let V be a TVS defined by a sufficient family of seminorms
and A ⊂ V convex compact. Then

A = conv(ex(A)).
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Before entering the proof, which uses the second geometric form of Hahn-
Banach, we make the following remark.

Remark 6.29. Let A ⊂ B ⊂ C be convex subsets. Then, if A is extreme
in B and B is extreme in C, A is extreme in C. Indeed, suppose that
(y, z) ∩ A ̸= ∅ for y, z ∈ C. Then, since A ⊂ B, (y, z) ∩ B ̸= ∅ so since B
is extreme in C we have [y, z] ⊂ B and hence [y, z] ⊂ A since A is extreme
in B.

Now lets get to the proof of the theorem.

Proof. (1) We first show that every closed convex nonempty extreme subset
B ⊂ A contains an extreme point of A. To this end, consider

E(B) := {c : C ⊂ B, C is nonempty, closed, convex and extreme in A}

with the ordering C1 ⩽ C2 if C2 ⊂ C1. This is a partially ordered set
and we now show that every totally ordered subset has an upper bound.
Let C ⊂ E(B) be totally ordered and define M :=

⋂
c∈C C. Since C is

totally ordered, given any finite subset {C1, . . . , Cn} of C we may assume
wlog that C1 ⊂ · · · ⊂ Cn and hence

⋂n
k=1Ck = C1 ̸= ∅. By compactness

of A we deduce M ̸= ∅. Clearly, M is closed and convex; in addition, if
(y, z)∩M ̸= ∅ with y, z ∈ A then for all C ∈ C, since C is extreme in A, we
have [y, z] ⊂ C and hence [y, z] ⊂ M . Thus M ∈ E(B) and it is an upper
bound of C. By Zorn’s lemma there exists a maximal element Z ∈ E(B); we
claim that Z is a single point.

For the contrary, assume that there exist x, y ∈ Z with x ̸= y. By
Hahn-Banach there is F ∈ V ∗ with F (x) < F (y). Now consider m :=
max{F (z) : z ∈ Z} which exists since Z is compact and D = {z ∈ Z : F (z) =
m}. Then D is closed and convex; in addition, if v, w ∈ Z and (v, w)∩D ̸= ∅
then for some t ∈ (0, 1),

m = F ((1− t)v + tw) ⩾ F (v) ⩾ F (w).

From
(1− t)F (v) + tF (w) = F ((1− t)v + tw) ⩾ F (v)

and t > 0 we get F (w) ⩾ F (v) and from
(1− t)F (v) + tF (w) ⩾ F (w)

with 1 − t > 0 we get F (v) ⩾ F (w). Thus, F (v) = F (w) = m. This shows
that [v, w] ⊂ D and hence D is extreme in Z so extreme in A by Remark
6.29. On the other hand, F (x) < F (y) so that x ̸∈ D which contradicts the
maximality of Z.

(2) Above we have shown that ex(A) ̸= ∅. Clearly, A ⊃ conv(ex(A)); if
there now were x ∈ A and x ̸∈ conv(ex(A)) then by the second geometric
form of Hahn-Banach there is α ∈ R and F ∈ V ∗ such that

F (x) > α > F (y)
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for all y ∈ conv(ex(A)). Consider now, as above,
m := max{F (z) : z ∈ A}

D := {z ∈ A : F (z) = m}.
As above, D is closed, convex and extreme in A hence by (1) contains an
extreme point e of A. But then

F (e) ⩾ F (x) > α > F (y)

for all y ∈ ex(A), a contradiction. ■
Let G ×X ! X be a countable group acting by homeomorphisms on a

compact Hausdorff space. An example is G = Z and the action is
Z×X ! X

(m,x) 7! ψm(x)

where ψ ∈ Homeo(X). There is a measure theoretic notion of transitivity
which which plays a central role in dynamics.

Definition 6.30. A G-invariant probability measure µ ∈ M1(X) is called
ergodic if whenever S ⊂ X is a G-invariant measurable set, we have either
µ(S) = 0 or µ(X \ S) = 0.

If now M1(X)G denotes the subsets of M1(X) of G-invariant probability
measures then M1(X)G is convex and weakly∗ closed, hence compact.

Lemma 6.31. µ ∈M1(X)G is ergodic iff µ is an extreme point of M1(X)G.

Proof. We only prove the ( ⇐= ) direction: if µ is not ergodic there is
S ⊂ X measurable G-invariant with 0 < µ(S) < 1. Define then

µ1 :=
1

µ(S)
µ|S , µ2 :=

1

µ(X \ S)
µ|X\S .

Then µ1, µ2 ∈M1(X)G and
µ = µ(S)µ1 + µ(X \ S)µ2.

Since µ ̸= µ1 and µ ̸= µ2, µ is not an extreme point. ■
The Kreinn-Milman Theorem then implies the following corollary.

Corollary 6.32. If there exists a G-invariant probability measure on X
then there is an ergodic one. In fact, every G-invariant probability measure
is a weak∗ limit of convex combinations of ergodic ones.
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Chapter 7. Fourier analysis and Sobolev embedding theorem
Recall that in Example ?? we defined a family of function spaces on Rn

called Sobolev spaces, denoted W s,p(Rd) where p ⩾ 1 and p ∈ N. Loosely
speaking, W s,p(Rd) consists of all functions admitting weak derivatives up to
order s that are in Lp(Rd). In this chapter we shall concentrate on W s,2(Rd)
and show that if s > r+ n

2 this space consists of bounded Cr-functions. The
means to achieve this is Fourier Analysis and the Plancherel Theorem to
which we turn now.

7.1. Basic Fourier Analysis on Rd

For a thorough treatment we refer to Ioacobelli, Analysis 4, Chapter 3.
Here we will recall the basic definitions and theorems necessary four our
purposes. For x, ξ ∈ Rd we write ξ · x for the euclidean inner product, and
we set

⟨f, g⟩ =
∫
Rd

fg dx

whenever |fg| ∈ L1(Rd).

Definition 7.1. For f ∈ L1(Rd) define the Fourier transform1 of f by

f̂(ξ) =

∫
Rd

f(x)e−2πi⟨ξ,x⟩ dx

Recall that
C0(R

d) =
{
f : Rd ! C : f is continuous and lim

|ξ|!∞
f(ξ) = 0

}
which together with the usual sup norm ∥ • ∥∞ is a Banach space.

Proposition 7.2. If f ∈ L1(Rd) then f̂ ∈ C0(R
d) and the operator

F : L1(Rd) ! C0(R
d), f 7! f̂

has operator norm ∥F∥ ⩽ 1.

Proof. First let us show that f̂ is continuous. This follows from the domi-
nated convergence theorem since |f(x)e−2πi⟨ξ+h,x⟩| = |f(x)| and thus

lim
h!0

f̂(ξ + h) = lim
h!0

∫
Rd

f(x)e−2πi⟨ξ+h,x⟩ dx

=

∫
Rd

lim
h!0

f(x)e−2πi⟨ξ+h,x⟩ dx = f̂(ξ).

For the second part we give an argument that generalises well to the case
of LCA groups (in our case of Rd one could also proceed with integration

1There exist different conventions for the definition of the Fourier transform, each
making certain properties more concise to state. Another common convention is

f̂(ξ) = (2π)−d/2

∫
Rd

f(x)e−i⟨ξ,x⟩ dx
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by parts). First we show it for f ∈ Cc(R
d). Comparing f to τhf , where

τhf(x) = f(x− h), we note that for any h, ξ ∈ Rd∫
Rd

|f(x)− τhf(x)| dx ⩾
∣∣∣∣∫

Rd

(f(x)− τhf(x))e
−2πi⟨ξ,x⟩ dx

∣∣∣∣
= |f̂(ξ)− e−2πi⟨ξ,h⟩f̂(ξ)| = |f̂(ξ)| · |1− e−2πi⟨ξ,h⟩|

using (1) of Lemma 7.6. By continuity and dominated convergence we know
that the left term goes to zero as h! 0. Now for any (ξn)n⩾1 s.t. |ξn| ! ∞
set (hn)n⩾1 s.t. |hn| = 1

|ξn| and |1 − e−2πi⟨ξ,hn⟩| ⩾ 1 so that the above
calculation gives us

lim
n!∞

|f̂(ξn)| ⩽ lim
n!∞

∥f − τhnf∥L1(Rd) = 0

as desired. Employing density of Cc(Rd) in L1(Rd), for f ∈ L1(Rd) and
ε > 0 we pick g ∈ Cc(R

d) with ∥f − g∥L1(Rd) < ε and find

lim sup
|ξ|!∞

|f̂(ξ)| = lim sup
|ξ|!∞

∣∣∣∣∫
Rd

f(x)e−2πi⟨ξ,x⟩ dx

∣∣∣∣ ⩽ lim sup
|ξ|!∞

|ĝ(ξ)|+ ε = ε

The last assertion follows from
∣∣f̂(ξ)∣∣ ⩽ ∥f∥L1(Rd). ■

Lemma 7.3. Let 1 ⩽ p < +∞ and f ∈ Lp(Rd). Then
Rd ! Lp(Rd), h 7! τhf

is continuous.

Remark 7.4. Observe that for f ∈ L∞(Rd), h 7! τhf is continuous iff f
coincides almost everywhere with a uniformly continuous function.

Proof. It suffices to prove continuity at zero since for y, h ∈ Rd we have
∥τa+hf − τaf∥Lp(Rd) = ∥τhf − f∥Lp(Rd). Again by density of Cc(Rd) in
L1(Rd) we may assume f ∈ Cc(R

d) yielding

lim
h!0

∥τhf − f∥p
Lp(Rd)

=

∫
Rd

lim
h!0

|f(x− h)− f(x)| dx = 0

by dominated convergence. ■
One of the major difficulties with the Fourier transform is that for f ∈

∥∥L1(Rd), f̂ does not satisfy any global integrability conditions on Rd. The
next proposition specifies a class of function in ∥∥L1(Rd) whose Fourier trans-
form is in ∥∥Lp(Rd) for all p ⩾ 1.

Recall that Ckc (Rd) is the space of compactly supported functions which
k times continuously differentiable. Recall also some multi-index notation:
Given (α1, . . . , αd) ∈ Nd we define

∂αf = ∂α1
x1 · · · ∂αd

xd
f

and for ξ ∈ Rd set ξα = ξα1
1 · · · ξαd

d .

Proposition 7.5.
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(1) If f ∈ C1
c (R

d), then ‘∂xjf(ξ) = 2πiξj f̂(ξ)

(2) If f ∈ Ckc (R
d) and |α| ⩽ k, then ‘∂αf(ξ) = (2πi)|α|ξαf̂(ξ)

(3) If f ∈ C∞
c (Rd), then f̂ ∈ C0(R

d) ∩ Lp(Rd) for all p ⩾ 1.

Proof.
(1) Via integration by parts we find (since f has compact support)‘∂xjf(ξ) = ∫

Rd

(∂xjf(x))e
−2πi⟨ξ,x⟩ dx

= −
∫
Rd

f(x)∂xje
−2πi⟨ξ,x⟩ dx = 2πiξj f̂(ξ)

(2) Follows by induction from (1).
(3) Using (2) we get that ξαf̂(ξ) is bounded for all α and so is∏d
j=1(1 + ξ2j )f̂(ξ). ■

Assertion (2) of the above proposition is of considerable interest since it
shows that F converts the operator ∂α into a simple multiplication.

For a ∈ R\{0}, let us define σaf(x) = f(x/a). We then have the following
properties:

Lemma 7.6. For f ∈ L1(Rd) it holds
(1) τ̂hf(ξ) = e−2πi⟨ξ,h⟩f̂(ξ)

(2) τhf̂(ξ) = f̂(ξ − h) = ÿ�e2πi⟨h,•⟩f(ξ)

(3) σ̂af(ξ) = adσ1/af̂(ξ) = adf̂(aξ)

(4) σaf̂(ξ) = f̂(ξ/a) = ad’σ1/af(ξ)
Proof. These are straightforward calculations. ■

Example 7.7. The function φ(x) = e−π|x|
2 satisfies φ̂ = φ.

Proof. We compute it for d = 1, the general case then follows.

φ̂(ξ) =

∫
R
e−πx

2
e−2πiξx dx

= e−πξ
2

∫
R
e−π(x−iξ)

2
dx

= e−πξ
2

∫
R
e−πx

2
dx = e−πξ

2
.

■

Let us now define the inverse Fourier transform:

Definition 7.8. For g ∈ L1(Rd) define

ǧ(ξ) =

∫
Rd

g(ξ)e2πi⟨ξ,x⟩ dξ.
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Note that ǧ = Fg so we may easily transfer the already established prop-
erties to ǧ. We may also use the notation

F∗g = ǧ

which is justified by

Lemma 7.9. If f, g ∈ L1(Rd) then

⟨Ff, g⟩ = ⟨f,F∗g⟩.

Now we are in the position to show a version of the Fourier inversion
formula.

Theorem 7.10. For f ∈ C∞
c (Rd) we have F∗Ff = f .

Proof. It suffices to show that F∗Ff(0) = f(0) for all f ∈ C∞
c (Rd). Indeed,

assuming this we have

f(x) = τ−xf(0) = F∗Fτ−xf(0) = F∗(e−2πi⟨x,•⟩Ff)(0) = F∗Ff(x).

We now want to show that

f(0) =

∫
Rd

f̂(ξ) dξ

for f ∈ C∞
c (Rd), or in other words that f(0) =

〈
f̂ ,1

〉
. Consider φ(x) =

e−π|x|
2 and φa(x) = φ(x/a) and notice that by Example 7.7 φ satisfies the

inversion formula, and hence also φa since

F∗Fφa = F∗Fσaφ = F∗adσ1/af̂ = f.

Now φa ! 1 pointwise as a! +∞ (in fact uniformly on compact sets) and
|f(x)φa(x)| ⩽ |f(x)| meaning dominated convergence gives us

〈
f̂ , φa

〉
!〈

f̂ ,1
〉

as a! ∞. On the other hand we have

⟨f̂ , φa⟩ = ⟨f,F∗φa⟩
= ⟨f, anσ1/aF∗φ⟩

=

∫
Rd

f(x)anF∗φ(ax) dx =

∫
Rd

f(x/a)F∗φ(x) dx.

Again, x 7! f(x/a) converges pointwise to f(0) as a ! ∞ and since∣∣f(x/a)F∗φ(x)
∣∣ ⩽ ∥f∥L∞(Rd)|φ(x)| we can apply dominated convergence

to conclude

lim
a!∞

⟨f̂ , φa⟩ = f(0)

∫
Rd

F∗φ(x) dx = f(0)

∫
Rd

φ(x) dx = f(0).

■

Corollary 7.11. For all f, g ∈ C∞
c (Rd) we have ⟨Ff,Fg⟩ = ⟨f, g⟩. In

particular
∥∥f̂∥∥

L2(Rd)
= ∥f∥L2(Rd).
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Theorem 7.12 (Plancherel). The map
F : L1(Rd) ∩ L2(Rd) ! C0(R

d)

extends uniquely to a unitary operator F : L2(Rd) ! L2(Rd).

We will need the following

Lemma 7.13. Let X,Y be Banach spaces with respective norms ∥ • ∥X , ∥ •
∥Y , E ⊂ X a vector subspace and T : E ! Y a bounded linear operator.
Then T extends uniquely to a bounded linear operator T̃ : E ! Y . If in
addition ∥Tx∥Y = ∥x∥X for all x ∈ E the same will hold for T̃ and x ∈ E.

Proof. For x ∈ E and (xn)n⩾1 ⊂ E with xn ! x we define
T̃ x = lim

n!∞
Txn.

This limit exists since
∥Txn − Txm∥Y ⩽ ∥T∥∥xn − xm∥X

and is also independent of the chosen sequence since if yn ! x then
∥Tyn − Txn∥Y ⩽ ∥T∥∥yn − xn∥X ! 0.

Lastly, if the assumption in the second assertion holds, for x ∈ E and any
xn ! x we have

∥T̃ x∥Y = lim
n!∞

∥Txn∥Y = lim
n!∞

∥xn∥X = ∥x∥X .

■
Proof. (Theorem 7.12)

Since ∥Fφ∥L2(Rd) = ∥φ∥L2(Rd) for all φ ∈ C∞
c (Rd) and C∞

c (Rd) is dense
in L2(Rd) (c.f. ), the above lemma tells us that F extends uniquely to an
isometry ‹F : L2(Rd) ! L2(Rd). We claim that for f ∈ L1(Rd) ∩ L2(Rd),‹Ff = f̂ . Indeed, if (φn)n⩾1 ⊂ C∞

c (Rd) converges to f in L2(Rd), then by
definition ‹Ff = limn!∞Fφn. By Corollary 7.11 we have

∥φn − f∥L2(Rd) = ∥φ̂n − f̂∥L2(Rd)

so φ̂n ! f in L2(Rd) giving us ‹Ff = f .
For surjectivity we note that since F∗f = Ff , F∗ is also norm-preserving

and by density extends to all of L2(Rd). Since F∗F = FF∗ = id on the
dense subspace C∞

c (Rd), it holds on all of L2(Rd). ■

7.2. Convolution

Definition 7.14. Given measurable f, g : Rd ! C and x ∈ Rd s.t. y 7!
f(x− y)g(y) is in L1(Rd) we define

f ∗ g(x) =
∫
Rd

f(x− y)g(y) dy.

We recall
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Proposition 7.15 (Young’s inequality). Let 1 ⩽ p, q, r ⩽ +∞ s.t. 1 + 1
r =

1
p +

1
q . Then if f ∈ Lp(Rd) and g ∈ Lq(Rd), f ∗ g is well defined and it holds

∥f ∗ g∥Lr(Rd) ⩽ ∥f∥Lp(Rd)∥g∥Lq(Rd).

In the case p = 1 this gives ∥f ∗ g∥Lq(Rd) ⩽ ∥f∥L1(Rd)∥g∥Lq(Rd).
One of the main points of the convolution product is that the Fourier

transform turns pointwise products into convolutions, namely for f, g ∈
L1(Rd) we have‘f ∗ g(ξ) =

∫
Rd

∫
Rd

f(x− y)g(y)e−2πi⟨ξ,x⟩ dy dx

=

∫
Rd

g(y)e−2πi⟨ξ,y⟩ dy

∫
Rd

f(x− y)e−2πi⟨ξ,x−y⟩ dx = f̂(ξ)ĝ(ξ)

whereby we can apply Fubini’s theorem due to∫
Rd

∫
Rd

|f(x− y)g(y)| dy dx ⩽ ∥f∥L1(Rd)∥g∥L1(Rd)

by Young’s inequality.
Our next goal will be to construct a sequence ηε ∈ C∞

c (Rd) s.t. for
1 ⩽ p < +∞ and every f ∈ Lp(Rd), ηε ∗ f ! f in Lp(Rd) as ε # 0 and
ηε ∗ f ∈ C∞

c (Rd): such a sequence ηε is called ”mollifier” or ”approximate
identity” and is a very useful tool.

Proposition 7.16. If f ∈ C∞
c (Rd) and g ∈ Lp(Rd) then f ∗ g ∈ C∞

c (Rd)
and ∂xi(f ∗ g) = (∂xif) ∗ g for all 1 ⩽ i ⩽ n.

For the proof, recall differentiation under the integral, namely

Lemma 7.17. Let (X,A, µ) be a σ-finite measure space, I ⊂ R open and
f : I ×X ! C a measurable function s.t.

(1) f(t, •) ∈ L1(X) for all t ∈ I
(2) f(•, x) is differentiable for a.e. x ∈ X
(3) there exists g ∈ L1(X) s.t. |∂tf(t, x)| ⩽ g(x) for all t ∈ I and a.e.

x ∈ X.
Then for every t0 ∈ I we haveÅ

∂t

∫
X
f(t, x) dx

ã ∣∣∣
t=t0

=

∫
X
∂tf(t0, x) dx

Proof. (Proposition 7.16)
For the sake of a simple notation we will show differentiability at x = 0

for i = 1. Now if B := B⩽r(0) is s.t. supp(f) ⊂ B, thenÅ
∂x1

∫
Rd

f(x− y)g(y) dy

ã ∣∣∣
x=0

=

Å
∂t

∫
Rd

f(te1− y)g(y)1B(te1− y) dy

ã ∣∣∣
t=0

and we can apply Lemma 7.17 to
h : I ×Rd, h(t, y) = f(te1 − y)g(y)1B(te1 − y).
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where I = (−ε, ε) is some open interval around zero. Indeed,

∥h(t, •)∥L1(Rd) ⩽ ∥f∥L∞(Rd)∥g∥Lp(Rd)Ld(B)1/q < +∞
for all t ∈ I as well as

|∂th(t, y)| ⩽ ∥∂x1f∥L∞(Rd)|g(y)1B+(−ε,ε)e1(y)|

where g1B+(−ε,ε)e1 ∈ L1(Rd). ■
Now we turn to the construction of approximate identity: fix any η ∈

C∞
c (Rd) with

∫
Rd η(x) dx = 1 and for ε > 0 let

ηε(x) =
1

εd
η
(x
ε

)
.

Then ηε ∈ C∞
c (Rd),

∫
Rd ηε(x) dx = 1 and if supp(η) ⊂ B⩽r(0) then supp(ηε) ⊂

B⩽εr(0).

Proposition 7.18.
(1) If f ∈ C(Rd) then ηε ∗ f ! f uniformly on compact sets as ε # 0
(2) If 1 ⩽ p < +∞ and f ∈ Lp(Rd), then ηε ∗ f ! f in Lp(Rd) as ε # 0.

Proof.
(1) We compute

|ηε ∗ f(x)− f(x)| =
∣∣∣∣∫

Rd

ηε(f(x− y)− f(y)) dy

∣∣∣∣
⩽ sup

y∈B⩽εr(0)
|f(x− y)− f(x)|

which by continuity of f shows (1).
(2) By density, for 0 < ε ⩽ 1 we may choose φ ∈ Cc(R

d) s.t. ∥φ −
f∥Lp(Rd) < ε. Then
∥ηε ∗ f − f∥Lp(Rd) ⩽ ∥ηε ∗ f − ηε ∗ φ∥Lp(Rd) + ∥ηεφ− φ∥Lp(Rd) + ∥φ− f∥Lp(Rd).

Now
∥ηε ∗ f − ηε ∗ φ∥Lp(Rd) = ∥ηε ∗ (f − φ)∥Lp(Rd)

⩽ ∥ηε∥L1(Rd)∥f − φ∥Lp(Rd) = ∥f − φ∥Lp(Rd) < ε.

Lastly, supp(ηε ∗ φ) ⊂ B⩽r(0) + supp(φ) := K so

∥ηε ∗ φ− φ∥p
Lp(Rd)

=

∫
K
|ηε ∗ φ(y)− φ(y)|p dy

⩽ sup
y∈K

|ηε ∗ φ(y)− φ(y)|pLd(K)

which by (1) vanishes as ε # 0. ■
This construction immediately gives us the following important corollary:

Corollary 7.19. Let Ω ⊂ Rd be an open subset and 1 ⩽ p < +∞. Then
C∞
c (Ω) is dense in Lp(Ω).
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Proof. Since Ω is locally compact and the Lebesgue measure is Radon,
Cc(Ω) is dense in Lp(Ω). Now for any f ∈ Cc(Ω) we have that ηε ∗ f ∈
C∞
c (Rd) for all ε > 0 small enough s.t. supp(ηε∗f) = B⩽εr(0)+supp(f) ⊂ Ω

and ηε ∗ f ! f in Lp(Ω) as ε # 0. ■

Here is another applicaiton that enters in the proof of Plancherel:

Lemma 7.20. Let 1 ⩽ p, q < +∞ and f ∈ Lp(Rd) ∩ Lq(Rd). Then there
is a sequence (φn)n⩾1 ⊂ C∞

c (Rd) s.t. φn ! f in Lp(Rd) and Lq(Rd).

7.3. Weak Derivatives

Let Ω ⊂ Rd be open. Recall that for f ∈ C∞(Ω) and φ ∈ C∞
c (Ω)

integration by parts gives∫
Ω
f∂αφ = (−1)|α|

∫
Ω
(∂αf)φ.

We use this to define weak derivatives:

Definition 7.21. Let f, g ∈ L1
loc(Ω), then g is the weak α-th partial deriv-

ative of f on Ω if ∫
Ω
f∂αφ = (−1)|α|

∫
Ω
hφ

for all φ ∈ C∞
c (Ω).

Observe that since φ and ∂αφ are compactly supported, these integrals
make sense. Our first task is to that if such a weak derivative exists, it is
unique. This will follow from

Lemma 7.22. Let g ∈ L1
loc(Ω). If

∫
Ω gφ = 0 for all φ ∈ C∞

c (Ω) then g = 0
a.e.

Proof. Suppose that g does not vanish a.e., then w.l.o.g. S := {g > 0}
has non-zero measure. Let δ := Ld(S) and choose a compact set K ⊂ S
s.t. Ld(K) ⩾ Ld(S) − δ/2 = δ/2. Now choose an approximate identity ηε
s.t. supp(ηε) ⊂ B⩽ε(0) and ε0 > 0 small enough s.t. supp(ηε0 ∗ 1K) ⊂
B⩽ε0(0) +K ⊂ Ω. Then for 0 < ε ⩽ ε0 we have ηε ∗ 1K ∈ C∞

c (Ω) and∫
Ω
g(ηε ∗ 1K) =

∫
Ω
g1K +

∫
Ω
g(ηε ∗ 1K − 1K).

The first term is by assumption positive and the second term can be made
arbitrarily small: Pass to a subsequence s.t. ηεk ∗ 1K ! 1K pointwise
a.e. and apply dominated convergence, using that supp(ηε ∗ 1K − 1K) ⊂
B⩽ε0(0) +K and

|g(ηεk ∗ 1K − 1K)| ⩽ sup
k⩾1

∥ηεk ∗ 1K − 1K∥L∞(Ω)|g1B⩽ε0
(0)+K |

⩽ |g1B⩽ε0
(0)+K |

We conclude that
∫
Ω gφ > 0 for φ = ηεk ∗ 1K and k large enough. ■
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If g is the weak α-partial derivative of f , we write g = ∂αwf . In particular
it follows from Lemma 7.22 that if f ∈ C∞(Ω) then ∂αwf = ∂αf .

Example 7.24. Let α > 0 and f(t) = |t|α. Then f ∈ L1
loc(R) and the weak

derivative ∂wt f exists and is equal to α sgn(t)|t|α−1.

Now we can define Sobolev spaces W k,p(Ω):

Definition 7.25.
W k,p(Ω) = {f : Ω ! C : ∂wα f exists for all |α| ⩽ k and ∂wα f ∈ Lp(Ω)}.

We define the norm on W k,p(Ω) by:

∥f∥Wk,p(Ω) :=
∑
|α|⩽k

∥∂αwf∥Lp(Ω)

Proposition 7.26. W k,p(Ω) is a Banach space.

Proof. Let (fk)k⩾1 be a Cauchy sequence in W k,p(Ω). Then for all α with
|α| ⩽ k, (∂αwf)k⩾1 is a Cauchy sequence in Lp(Ω) and hence has a limit
fα ∈ Lp(Ω); let f = fα for α = (0, . . . , 0) and observe that fα ∈ Lp(Ω) ⊂
Lploc(Ω) ⊂ L1

loc(Ω). By definition we have for all |α| ⩽ k and φ ∈ C∞
c (Ω):∫

Ω
fk∂

αφ = (−1)|α|
∫
Ω
(∂αwfk)φ

but as ∂αwfk ! fα in Lp(Ω) and φ ∈ L1(Ω) we get∫
Ω
(∂αwfk)φ!

∫
Ω
fαφ.

Since fk ! f in Lp(Ω) we get∫
Ω
f∂αφ = (−1)|α|

∫
Ω
fαφ

and hence ∂αwf = fα. ■
Remark 7.27. W k,2(Ω) is a Hilbert space; in fact for f, g ∈W k,2(Ω)

⟨f, g⟩ =
∑
|α|⩽k

⟨∂αwf, ∂αwg⟩

leads to the norm

∥f∥ =

Å∑
|α|⩽k

∥∂αwf∥2L2(Ω)

ã1/2
which is equivalent to ∥f∥W 2,k(Ω).

Let
C∞
k,p(Ω) := {f ∈ C∞(Ω): ∥∂αf∥Lp(Ω) < +∞ for all |α| ⩽ k}.

Then C∞
k,p(Ω) ⊂ W k,p(Ω) and it is a fact that the former is dense in the

latter for any open Ω ⊂ Rd. The proof of this is rather delicate and here
we will show it for Ω = Rd. To this end we collect some simple facts about
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weak derivatives which will be also useful later on in the proof of the Sobolev
embedding theorem.

Lemma 7.28.
(1) If f ∈W k,p(Ω) and |α|+ |β| ⩽ k then ∂αw∂

α
wf = ∂α+βw f

(2) If f ∈W k,p(Ω) and φ ∈ C∞
c (Ω) then φf ∈W k,p(Ω)

(3) If φ ∈ C∞
c (Rd) and f ∈ W k,p(Rd) then φ ∗ f ∈ C∞

k,p(R
d) and

∂α(φ ∗ f) = φ ∗ ∂αwf for all |α| ⩽ k.

Proof.
(1) For all φ ∈ C∞

c (Ω) we have∫
Ω
(∂αw∂

β
wf)φ = (−1)|α|

∫
Ω
(∂βwf)∂

αφ

= (−1)|α|+|β|
∫
Ω
f∂α+βφ =

∫
Ω
(∂α+βw f)φ.

By Lemma 7.22 we get ∂αw∂
β
wf = ∂α+βw f .

(2) Let ψ ∈ C∞
c (Rd); we may assume k ⩾ 1.∫

Ω
φf∂jψ =

∫
Ω
f(∂jφψ − ψ∂jφ)

=

∫
Ω
f∂jφψ −

∫
Ω
fψ∂jφ

= −
∫
Ω
(∂wj f)φψ −

∫
Ω
fψ∂jφ

= −
∫
Ω
((∂wj f)φ+ f∂jφ)ψ.

Since ∂wj f ∈ Lp(Ω) and f ∈ Lp(Ω) so is (∂wj f)φ + f∂jφ and hence ∂wj (φf)
exists and is in Lp(Ω) and ∂wj (φf) = φ∂wj f + f∂jφ for all 1 ⩽ j ⩽ d. One
completes the proof by recurrence on |α| using the formula

∂α(φψ) =
∑

0⩽β⩽α

Ç
α

β

å
∂βφ∂α−βψ

and integrating by parts.
(3) We know that φ∗f ∈ C∞(Rd) by Proposition 7.16, and also φ∗∂αwf ∈

Lp(Rd) for all |α| ⩽ k by Proposition 7.15. Thus it suffices to show that
∂α(φ ∗ f) = φ ∗ ∂αwf for all |α| ⩽ k. We have for all ψ ∈ C∞

c (Rd)∫
Rd

(φ ∗ ∂αwf)ψ =

∫
Rd

(∂αwf)(φ̃ ∗ ψ)

where we set φ̃(x) = φ(−x). The latter equals

(−1)|α|
∫
Rd

f∂α(φ̃ ∗ ψ) = (−1)|α|
∫
Rd

(φ ∗ f)∂αψ =

∫
Rd

(∂α(ψ ∗ f))ψ

and shows ∂α(φ ∗ f) = φ ∗ ∂αwf . ■
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Proposition 7.29. For 1 ⩽ p < +∞, C∞
k,p(R

d) is dense in W k,p(Rd).

Proof. Let ηε be an approximate unity and f ∈ W k,p(Rd). By Lemma
7.28, ηε ∗ f ∈ C∞

k,p(R
d) and ∂α(ηε ∗ f) = ηε ∗ ∂αwf for all |α| ⩽ k. By

Proposition 7.18 (2) we have for |α| ⩽ k, ηε ∗ ∂αwf ! ∂αwf in Lp(Rd) and
hence ∂α(ηε ∗ f) ! ∂αwf in Lp(Rd). ■

7.4. Sobolev embedding theorems

The aim of this section is to prove

Theorem 7.30 (Sobolev). If f ∈W k,2(Rd) and k > r+ d
2 then f ∈ Crb (R

d).
Moreover, the inclusion W k,2(Rd) ! Crb (R

d) is a bounded operator.

Remark 7.31. More precisely, if f ∈ W k,2(Rd), f coincides a.e. with a
Cr-function that is bounded. Interestingly, while in the statement of the
theorem there is no Fourier transform, the latter is a crucial tool in the
proof.

We proceed with three lemmas.

Lemma 7.32. If f ∈W k,2(Rd) then for all |α| ⩽ k‘∂αwf(ξ) = (2πi)|α|ξαf̂(ξ)

and in particular ξαf̂ ∈ L2(Rd) for all |α| ⩽ k.

Proof. By induction it reduces to the case k = 1. Let φ ∈ C∞
c (Rd); since

∂wj f ∈ L2(Rd) we have by Plancherel

⟨‘∂wj f, φ̂⟩ = ⟨∂wj f, φ⟩ = −⟨f, ∂jφ⟩ = −⟨f̂ , ∂̂jφ⟩.
By Proposition 7.5 (1) we have

∂̂jφ(ξ) = 2πiξjφ̂(ξ)

and thus

−⟨f̂ , ∂̂jφ⟩ = −
∫
Rd

f̂(ξ)∂̂jφ(ξ) dξ =

∫
Rd

f̂(ξ)2πiξjφ̂(ξ) dξ = ⟨2πiξj f̂ , φ̂⟩.

Finally, since
{
φ̂ : φ ∈ C∞

c (Rd)
}

is dense in L2(Rd) we obtain the desired
result. ■

For the sake of the applications we have in mind we formulate the next
lemma in terms of the inverse Fourier transform, which we recall is given by

ȟ(x) =

∫
Rd

h(ξ)e2πi⟨ξ,x⟩ dξ.

Lemma 7.33. Let r ∈ N, assume h ∈ L1(Rd) and ξαh ∈ L1(Rd) for all
|α| ⩽ r. Then ȟ ∈ Crb (R

d) and ∂αȟ(x) = (2πi)|α|(ξαh)∨(x).

Proof. As usual, by induction this reduces to the case r = 1 where a dif-
ferentiation under the integral sign establishes the claim. ■
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Lemma 7.34. Let r ⩾ 0; assume f ∈ L2(Rd) and ξαf̂ ∈ L1(Rd) for all
|α| ⩽ r. Then f ∈ Crb (R

d) and ∂αf=(2πi)|α|
(
ξαf̂

)∨
.

Proof. Apply the preceding lemma to h = f̂ : then we get that ȟ ∈ Crb (R
d)

and ∂αȟ(x) = (2πi)|α|(ξαh)∨(x). Now use the hypothesis f ∈ L2(Rd) to
conclude ȟ =

ˇ̂
f = f . ■

Now we turn to the proof of Theorem 7.30.

Proof. By Lemma 7.32 we have ξαf̂ ∈ L2(Rd) for all |α| ⩽ k. In order to
show that f ∈ Crb (R

d) it suffices to show that ξαf̂ ∈ L1(Rd) for all |α| ⩽ r.
To this end, write ξαf̂ = ghα where

g = (1 + |ξ|k)f̂

hα =
ξα

1 + |ξ|k
.

Let’s show that h, g ∈ L2(Rd) . This will imply, for |α| ⩽ r,
∥ξαf̂∥L1(Rd) ⩽ ∥g∥L2(Rd)∥hα∥L2(Rd).

Lemma 7.34 will then imply that f ∈ Crb (R
d) and ∂αf = (2πi)|α|

(
ξαf f̂

)∨
and thus ∥∂αf∥L∞(Rd) ⩽

∥∥ξαf̂∥∥
L1(Rd)

. On the other hand we will relate
∥g∥L2(Rd) to the Sobolev norm of f , concluding hte proof.

To estimate ∥g∥L2(Rd), use that |ξ| ⩽
∑d

j=1 |ξj | and hence

|ξ| ⩽
d∑
j=1

|ξj | ⩽ n1−1/k

Å d∑
j=1

|ξj |k
ã1/k

i.e. |ξ|k ⩽ nk−1
∑d

j=1 |ξj |k. Thus

|g| ⩽ nk−1

Å
|f̂ |+

d∑
j=1

|ξkj f̂ |
ã

which implies, using Lemma 7.32 and Plancherel,

∥h∥L2(Rd) ⩽ nk−1

Å
∥f∥L2(Rd) +

d∑
j=1

∥∂kj f∥L2(Rd)

ã
⩽ nk−1∥f∥Wk,2(Rd)).

Next,
|hα(ξ)| ⩽

|ξ|α

1 + |ξ|k
⩽ |ξ|r

1 + |ξ|k
and in polar coordinates∫

Rd

|ξ|2r

(1 + |ξ|k)2
dξ = cd

∫ ∞

0
rd−1 r2r

(1 + rk)2
dr

which converges iff k > r + d
2 . ■
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Chapter 8. Miscellaneous
8.1. Topology

Proposition 8.1. A metric space (X, d) is compact if and only if it is
complete and totally bounded. X is totally bounded if ∀ε > 0 there exists
some finite subset A ⊂ X s.t.

X =
⋃
a∈A

B⩽ε(a)

i.e. X is the union of finitely many balls of radius ε.

Proof. We show that it is equivalent to sequential compactness. First, to see
that it implies sequential compactness, for any (an)n⩾1 ⊂ X we construct a
convergent subsequence (bn)n⩾1 as follows: By total boundedness of X there
exist x1, . . . , xm s.t. X =

⋃m
k=1B⩽1(xk) so there exists a x(1) ∈ {x1, . . . , xm}

s.t. infinitely many sequence members lie in B⩽1(xk), set b1 to any of these
sequence members. Then bn is defined as one of the infinitely many sequence
members lying in the set

⋂n
k=1B⩽1/k(x

(k)) with x(k) iteratively chosen as
described above. Then (bn)n⩾1 is a Cauchy sequence and sinceM is complete
it converges.

For the other direction, if (an)n⩾1 is a Cauchy sequence then there exists a
convergent subsequence (ank

)k⩾1 since M is sequentially compact. Writing
l for the limit of this subsequence we see that the entire sequence converges
to l since

d(an, l) ⩽ d(an, ank
) + d(ank

, l)

Next, suppose M was not totally bounded so that there exists an ε > 0
s.t. M can not be covered by finitely many balls of radius ε. Now define
the sequence (xn)n⩾1 recursively by x1 ∈ X and xn ∈ X \

(⋃n−1
k=1 Bε(xk)

)
so that d(xn, xm) ⩾ ε for all n,m ⩾ 1 and hence (xn)n⩾1 can not contain a
convergent subsequence, a contradiction. ■
Proposition 8.2. Let X be a topological space. Then the following are
equivalent:

(1) Every open cover of X admits a finite open subcover.
(2) If {Fα}α∈A is family of closed subsets of X s.t. for every finite subset

J ⊂ A,
⋂
j∈J Fj ̸= ∅, then also

⋂
α∈A Fα ̸= ∅.

Proof. (1) =⇒ (2) Let {Fα}α∈A be a family of closed sets such that
⋂
j∈J Fj ̸=

∅ for all finite J ⊂ A but
⋂
α∈A Fα = ∅. Then {X \Fα}α∈A is an open cover

of X and hence, by assumption, admits a finite open subcover {U1, . . . , Um}.
However, this means that

⋃m
k=1 Uk = X so that

⋂m
k=1X \ Uk = ∅. But

X \Uk ∈ {Fα}α∈A which contradicts that finite intersections of sets belong-
ing to this family are non-empty.

(2) =⇒ (1) Let {Uα}α∈A be an open cover of X that does not admit a
finite open subcover. Then for every finite J ⊂ A we have

⋃
j∈J Uj ̸= X

meaning {X \Uα}α∈A is a family of closed sets s.t. the intersection of every
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finite subfamily is non-empty. By assumption this means
⋂
α∈A(X\Uα) ̸= ∅

contradicting that {Uα}α∈A is an open cover of X. ■

8.2. Measure Theory

Theorem 8.3 (Change of variables). Let (X,B, µ) be a measure space and
let ϕ : X ! Y be a measurable function from (X,B) to another measurable
space (Y, C). Then for all measurable functions f : Y ! [0,+∞] we have∫

X
(f ◦ ϕ) dµ =

∫
Y
f dϕ∗µ

whereby ϕ∗µ : C ! [0,+∞] is the pushforward of µ by ϕ given by ϕ∗µ(E) :=
µ(ϕ−1(E)).

Proof. First, if f = 1E is an indicator function, for E ∈ C we have∫
X
(f ◦ ϕ) dµ =

∫
X
1E(ϕ(x)) dµ(x) =

∫
X
1ϕ−1(E)(x) dµ(x) = µ(ϕ−1(E))

and using the definition of the pushforward we find

µ(ϕ−1(E)) = ϕ∗µ(E) =

∫
Y
1E(x) dϕ∗µ(x) =

∫
Y
f dϕ∗µ.

Using linearity one sees that this equality holds for all simple functions so an
application of the monotone convergence theorem concludes the proof. ■
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