FUNCTIONAL ANALYSIS

NICOLAS MUNCHINGER

ABSTRACT. These notes are a typed version of Professor Burger’s lec-
ture notes, whereby some explanations and proofs were added.
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Chapter 1. Banach Spaces, bounded linear Maps: first properties
and examples

1.1. NORMED SPACES, BANACH SPACES, EXAMPLES
In this course all vector spaces will be over the field K where K = R, C.
These are normed fields where
e for z € R, |z| := max(z, —x)

o for z=u+iy e C, |z| = /22 + y?

Now, let V be a K-vector space.

Definition 1.1. A norm on V is a map V — R, v — ||v| satisfying

(1) |l =0 forallv e V and ||v]| =0iff v =0
(2) |lv+w|| < ||| + [Jw| for all v,w eV
(3) |lav|| = |a]||v]| for all « € K and v € V

Definition 1.2. A normed space is a K-vector space together with a norm
| - |I; it is often denoted by (V.|| -||)-

Define d(v,w) := ||[v — w||. Then properties (1) + (2) are equivalent to
the distance axioms (of a metric). In addition:
d(av, aw) = |ald(v,w).
Thus a normed space (V| - ||) has a natural distance and in particular is a
topological space. By definition of the topology, a basis of open sets is given
by*
{B<r(z) |z €V, r >0}
The K-vector space structure and the topology on V' are then compatible

in the following sense:

Lemma 1.3. The maps
(1) KxV =V, (a,v) — av
(2) VXV =V, (v1,02) = v1 + 02
are continuous.
Proof. Note that we interpret K x V and V x V to be endowed with the
product topology.

(1) Let € > 0 and (a,v) € K x V be arbitrary; write p for the function
in (1). Next, we want to find some open U C K x V s.t. p(U) C Bec(av).
One finds

p(B<s(@) x B<§(v)) C Bgjo)+6(|al+6)(@v) C Bee(aw)
for ¢ suitably small. This holds, since for 8 € B.5(0) we have

(o + B)B<s(v) = Boglatp((a+ B)v).

IWe will write B,.(x) to denote the open ball of radius r centered at z. For closed
balls we will write B¢, ().



(2) Again, for € > 0 and (vi,v2) € V x V arbitrary and write a for the
function in (2). Then

p(B<s(v1) X Bes(v2)) = Bes(vi) + Bes(v2) C Beos(vi + v2)
so choosing 2§ < € does the job. |

Later in the course we will have to focus on more general objects than
normed spaces, namely:

Definition 1.4. A topological vector space is a vector space V endowed
with a topology for which the maps (1) 4+ (2) in Lemma 1.3 are continuous.

Clearly all concepts pertaining to the theory of metric spaces make sense
for normed spaces. The most imporant one:

Definition 1.5. A normed space (V.|| - ||) is called a Banach space if the
underlying metric space (V,d) is complete.

And:

Definition 1.6. A normed space is (V|| - ||) is separable if the underlying
metric space (V,d) is.

We now turn to examples.
Example 1.7. Let V be a K-vector space with an inner product
(,): VxV =K.
Then ||z|| := \/(z,z) defines a norm on V since
lz +yl* = (@, 2) + 2Re(z,) + (y, y)
< lzl® + 2lllllly ] + llyl* = (el + 1y l)

using Cauchy-Schwarz. An inner product space (V, (-, -)) is called a Hilbert
space if (V|| - ||) is complete, that is a Banach space.

Inner product spaces can be characerised among normed spaces as those
whose norm satisfies the parallelogramm law:

2+ ylI* + [l = ylI* = 2(lz]* + [ly]I*).
For an exposition cf. Iacobelli, Analysis 4, section 1.1.

Example 1.8. is a cg-algebra of subsets of 2 called measurable sets and
w: F — [0,+00] is a o-additive measure. For 1 < p < +oo let

LP(Q,K) := {f Q0 — K measurable | || f[|zr(q) := /Q |f(z)]P du(z) < —{—oo}/N

whith f ~ g if f(x) = g(x) almost everywhere (with respect to the measure
). Then || - || 1r(q) satisfies all properties of a norm. The triangle inequality
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follows from the convexity of x +— zP when p > 1 or can also be deduced

using Holder’s inequality®, which states that for f,g: & — R we have
19l ) < 1fllzr@llgllzaco)

with 1 < p < 400 and ¢ the corresponding conjugate exponent, i.e.

1 1
S4S=1
poq

For p = +o00 one defines
L*(Q,K) :={f: X — K measurable | 3M > 0: |f(z)| < M a.e.}
with norm
||f”L<x>(Q) =inf{M > 0: |f(z)| < M a.e.}.
Special case: If F = 2% and p is the counting measure, the correspond-
ing LP space is denoted by (X, K).

Theorem 1.9. Let 1 < p < oo and (fy)n>1 a Cauchy-Sequence in LP(, p1, K).
Then tehre is a susbequence (fy,)r>1 converging almost everywhere to a
measurable function f: Q — K. In addition, f € LP(Q, u, K) and

Jim {|f = fall o) = 0.

The case p = 2 is special as || - || 12(q) is induced by the inner product

(f,9) :/Qf(ﬁf)g(x)dx

Example 1.10. Let X be a topological space and
Cy(X) :={f: X — R continuous and bounded}.
For f € Cp(X) we let
Hﬂwziyﬂ@

which makes is a Banach space (this is readily checked since || - ||, is the
uniform norm and continuity respectively boundedness are properties which
are preserved by uniform convergence).

IFor the proof of this inequality we can exploit the convexity of x +— e*: First, since
the inequality is multiplicatively symmetric we can assume that || f||Lro) = ||gllLe@) = 1.
Next, by convexity, for a,b > 0 one has

ab = exp(In(a) + In(b))
_ In(a?) | In(b7)
=ew (7 )
_ ep(n(@?) | esp(n(t) _ o v

P q P q
Setting a = f, b = g and integrating both sides yields the desired bound of 1.
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Example 1.11. Let a > 0; then A%(R) is the space of all bounded contin-
uous functions f: R — R satisfying

sup T@ =TI
TH#Y ’1‘ - y’a
Then for f € A*(R)
[f(x) = f(y)]

1fl|ae := sup [f(z)] 4 sup
zeR TH#Y |33 - y|a

gives rise to a norm on A*(R) for which it is a Banach space. If & > 1 then
any f € A“(R) is constant.

Example 1.12. The following family of functions spaces on RY, called
Sobolov spaces, are fundamental in the study of partial differential equa-
tions. First a definition: a function f € LP(RY) (where the underlying mea-
sure is the Lebesgue measure on R?) is said to have weak derivatives in LP up
to order k € N if for every (aq,...,aq) € N? with |a| := a1 + -+ ag < k,
there is some g, € LP(RY) with

/ go(@)p(x) dz = (~1)l / F(2)0% (@) du
Rd RA
for all ¢ € C°(R?). Observe that if f € C*®(RY) then

ga(x) = 0 f(x)

as can be seen by repeated integration by parts. In general, if f € LP(R%)
has weak derivatives in LP up to order k, we write by abuse of terminology,

9o = agf
and denote by L7 (R?) this function space. Then
”fHL’,;(Rd) = Z Ha:?fHLP(Rd)
la|<k

turns LY (R?) into a Banach space. A version of the Sobolov embedding
theorem says that if m > % and f € L2 (R?) then f can be corrected on a
set of measure zero to become C* for k < m — %.

We now turn to properties of finite dimensional normed spaces. The
following concept of equivalence for norms will prove useful.

Definition 1.13. Two norms || - ||1, || - |2 on a vector space V are called
equivalent if there exists some C' > 0 s.t.

1
5!\1‘”1 < lzllz < Ozl
forallz € V.

Clearly, if || - |1 and || - ||2 are equivalent norms then (V|| -||1) is a Banach
space iff (V|| - |2) is.
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Example 1.14. Consider cgg(Z), the space of all continuous functions
f:Z — K having finite support. Then for 1 < p1,p2 < +00 the norms
|- llp, and || - ||p, o0 coo(Z) are equivalent iff p; = po.

For finite dimensional vector spaces we have the following:

Proposition 1.15. On a finite dimensional K-vector space V all norms are
equivalent.

Proof. Since any finite dimensional vector space V is isomorphic to K¢ it
suffices to show the result for K¢. Let ||| be any norm on K¢ and || - |2 the
Euclidean norm. Now, if (e1,...,e,) be the canonical basis, we have that
for all z = >} ager

n

n
] = || ewer|| <D lolllexll
k=1 k=1
n 1/2
2 —
< M max o] < Ma( Y Janl?) = el
k=1
for M = max{||e1]],..., |len] }
For the other direction, note that |- || is a continuous function so it attains

its Minimum on the compact set S := {z € V: ||z||2 = 1}, let it be C. Then
for all z € S we have ||z| > C = C||z||2.
Since norm-equivalence is a transitive relation we are done. |

We can deduce the following fact:

Corollary 1.16. In a normed space, any finite dimensional subspace is
closed.

Proof. Since all norms are equivalent we find that such a subspace is com-
plete and hence closed as a subspace of any normed space. [ |

Even if norms are equivalent, their respective unit balls can have very
different geometric properties, e.g. the unit ball with respect to the euclidean
norm is a literal ball, whereas it is a square for the maximum norm (aka
infinity norm).

1.2. CONTINUOUS LINEAR MAPS

Having defined the objects of the category of normed spaces, we need the
morphisms. These turn out to be continuous linear maps and admit various
characterisations. In a normed space (V, || - ||) we say that a subset B C V/
is bounded if there is some 0 < R < +00 s.t. B C B<g(0).

Definition 1.17. A linear map T': V' — W between normed spaces (V, || -
V), (W, |- |lw) is bounded if T'(B) is bounded whenever B C V is bounded.



Observe that the property for T to be bounded is equivalent to
1T = sup{[|IT(z)[lw: |zllv <1,z € V} <400

meaning that T'(B<;(0)) is bounded, whereby ||T|| is called the operator
norm.

Theorem 1.18. Let T: V — W be a linear map of normed spaces V, W.
The following are equivalent:

(1) T is continuous in 0 € V
(2) T is continuous on V
(3) T is bounded

(4) T is Lipschitz continuous with Lipschitz constant ||T||.

Proof. (1) = (2): From Lemma 1.3 we know that for all v € V' the map
L,:V =V, x+— x+ v is continuous. The additivity of T can be expressed
by the commutativity of the below diagram

v — T ow

L_y LT(v)

Veeo7— W

T
Thus T' = Ly o T o L. If now T' is continuous in 0 this implies that
Ly@yoT o L, is continuous at 0 and hence , using L_,(v) = 0, T is

continuous at v.

(2) = (3): Since T is continuous at zero there exists some £ > 0 s.t.
T(Bga(O)) - BZ(O) so in particular T(B‘g/l(O)) - Bz/e(O).

(3) = (4): T being bounded implies the existence of some C' > 0 s.t.
|T(x)||w < C for all z € BY,(0). In particular we have | T(z)||w < C||z||v
for arbitrary x and hence

IT(z) = T(y)llw = T(x = y)llw < Cllz —yllv
for all x,y € V.
(4) = (1): This direction is clear. [ |
From now on, given normed spaces V and W we will denote
B(V,W):={T:V — W: T is linear and bounded}.

Next, let us consider a property of the operator norm, namely submulti-
plicativity.
Proposition 1.19. Let U L. v 25 W be bounded linear maps between
normed spaces, then [|SoT| < ||S] - |7

Proof. For any z € Bgl (0) we compute
1S(Tz)|l < ISII T < STzl < [IS11T]
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so taking the supremum over BY,(0) the result follows. [ |

Remark 1.20. This simple observation is quite fundamental as it endows
B(V,V) with teh structure of a Banach Algebra, which will be topic of
Functional Analysis II.

We observe that if V' and W are normed spaces then T +— ||T'|| gives rise
to a norm on B(V,W).

Definition 1.21. B(V,K) is called the dual space of V' and denoted V*.

Proposition 1.22. If W is a Banach space then B(V,W) equipped with
the operator norm is a Banach space. In particular for any normed space V'
its dual space V* is a Banach space with respect to the operator norm.

Proof. Let (A,)n>1 be a Cauchy sequence in B(V,W). Since for any z € V
we have

[An(2) = Am ()| < [|An = Am|l ||l

the sequence (A, (x))n>1 is Cauchy in W and hence converges. This means
the function

AV —-W, z~ lim A,(z)

is well defined. Linearity of A follows from properties of the limit and
linearity of the A,; next we show boundedness. One has

[A(@)|| = |A(z) — An(z) 4+ An(2)]]
< JAG@) = An ()| + [[An(@) || < [[A(2) = An(@) ]| + [|An]l]|2]

whereby the first term goes to zero as n — oo and the second term converges
since

[ Anll = [Aml] < [[An = A

so that ||A]| < limy,— |[|Ar||. It remains to show that A,, — A with respect
to the operator norm (so far we have only established pointwise conver-
gence). By continuity of the norm we find
[An(z) = A(z)]| = Tim [[An(z) = Ap(2)]] < limsup || An — Ap ||| z]]

m—oo m—o0
so in particular

|A — A,|| <limsup |4, — A

m—0o0
which lets us deduce
limsup |4, — A|| < limsuplimsup ||A, — An|| =0
n—oo n—oo m—0o0

since (A,)n>1 is Cauchy, which implies lim,,_. || 4, — Al = 0. [ |
In certain situations linear maps are automaically continuous.

Proposition 1.23. Let V and W be normed spaces and T': V' — W a linear
map. Assume V is finite dimensional, then T is bounded.
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Proof. Since for finite dimensional vector spaces the unit sphere is com-
pact!, we can argue by contradiction. If there existed a sequence (v, )p>1 C
BY,(0) with || Tv,||w > n. By compactness there exists a convergent subse-
quence (vy, )k>1 converging to v, contradicting that T'v,,, is unbounded. W

Before we move to examples of bounded linear maps, we deifne the opera-
tion of adjunction which in a sense generalises the transpoition of a matrix.

Recall that if V' is a normed K-vector space, its dual V* is defined as:
V* = B(V,K). Given now A € B(V,W) a bounded linear map of normed
K-vector spaces, we have that YA € W*, the composition

Ao A:V LW A K
defines an element in V* denotes A*\. This way we obtain a linear map
AW - VF
called the adjoint of A. Let us show that A* is bounded:
[(A*A) ()] = [A(Az)| < [[AH[ Al
which implies
[AZA < AN

so taking the supremum over all [[A|| < 1 we find ||A*|| < [|A|. Later,
we will see that this inequality is in fact an equality, a consequence of the
Hahn-Banach theorem.

Laslty, let us quickly look at the special case of A* when the underlying
space is a Hilbert space (i.e. an inner product space that is additionally
complete). Assume H,,Hz are Hilbert spaces; we know that the map

iv: Hi — Hy, i1(v)(z) = (x,v)

is a bijection (Riesz representation theorem). Now, letting 7' € B(H1, Hz)
and T™: H5 — H] we define

1By Heinel-Borel we know that {|z| < 1: z € R} ¢ R? is compact, being closed and
bounded. If V is now an arbitrary finite dimensional space of dimension d, there exists

an isomorphism ®: RY — V and the function || - ||¢: R — R, 2 — ||®(x)||v defines a
norm on R?. By norm equivalence we conclude that B<Rf (0, - ||@) is compact. If now
(vn)n>1 C BY1(0) then the sequence (&7 (vy))ns1 C Bi‘f(o, || - llo) has a convergent

subsequence (&' (vy,,))k>1 so that by definition of || - ||& the sequence (vn, )x>1 converges
w.rt. || v.
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12
Hy — 2 903

T T+

Hi — HI
ie. T := ifl oT* oig. Then T" € B(H2,H1) and satisfies
(v, T'w) = i1 (T"w)(v)

= i1((i7" o T* 0 iz)(w))(v)

= i1(i7 ! o T"[ha = (ha,w)])(v)

=i (iy " ([hy = (Thi, w)]))(v)

= [h1 — (Thy,w)](v) = (Tv,w)
In the case of Hilbert spaces we will denote 7" by T* (by abuse of notation).

Definition 1.24. Let H be a Hilbert space; a bounded linear operator
T:H — H is called

(a) Self-adjoint if T* =T

(b) Unitary if T*T = TT* = idy
Remark 1.25. A unitary operator has in particular has in particular the
property that | T||? = ||v||? for all v € H.

More generally:

Definition 1.26. A bounded operator T: V' — W of normed spaces is an
isometry if

[Tollw = ol YoeV

Example 1.27 (Multiplicative Operator). Let (€2, F, 1) be a measure space
and ¢ € L>®(Q). Then if f € LP(Q) then

[f(@)p(@)] < llellze@lf(@)]
and hence fo € LP(Q2). We deduce that the linear operator
My: LP(Q) — LP(2),  f = fo

is bounded with || My|| < |[¢[[z~(q)- In fact, this inequality can be turned
into an equality: For arbitrary € > 0 there exists a set E. of positive measure
s.t.

(@) = (1= ¢e)llellre(@)-
Now we consider the function f. :=1 Efm which clearly has unit LP-
norm and satisfies

1

Pdp=——— Pdu = (1 —e)P|loll? /o
Vo= s [ iz 1= ePIl g
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Since £ can be made arbitrarily small the desired result follows.

This example is absolutely fundamental: Let V' be a finite dimensional R-
inner product space (finite dimensional real Hilbert space) and T: V — V
a self-adjoint map, n = dim(V) and X = {1,...,n} with p the counting
measure. Then there exists a Hilbert space isomorphism

vV -2 2(x)

and ¢ € L*(X) s.t.

vV —9% 5 2(X)

V ——— (X)
commutes. This is a reformulation of the theorem that a real symmetric

matrix admits an orthonormal set of eigenvectors with real eigenvalues.

Example 1.28 (unitary representation). Let I" be a group which we con-
sider as a measure space with counting measure. In this example ¢2(I') =
2T, C). For f € 2(T') and v € T define

(%) A L)) = fF(vn).

Then
=> fO'ma(n) =D fmglm) = (£, A g)
nel’ nel

from which we deduce

A=A,

In addition the definition in (%) with the inverse of 7 is chosen s.t.
1

Ay2)f = [z = f((nre)"le)] = o= flz ' )] = Ay A(r2) f-

In particular:
A AM) = A HAM) = Ae) = id
ANAN) = ANAT) = Ae) = id
I

meaning A\: I' — U(¢3(I')) is a homomorphism into the group U(¢?*(T)) of
unitary operators of ¢2(I).

Fact: For v € T, A(y) has an eigenvector in /(') <=~ is of finite
order in I'.

For the necessary condition, if v had infinite order and f was an eigenvec-
tor of A(y) then there would exist some o € C s.t. A(y)f = af. In particu-

lar, given any 1 € I with! f(n) # 0 we would have f(y~'n) = af(n). This

1Such an 1 must exist since, by definition of eigenvectors, f has to be nonzero.
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means « # 0 since otherwise f(n) = 0 and iterating the identity we obtain
f(y~™n) = a™f(n) for any m € Z. However, this contradicts f € £2(T").

Next the sufficient condition: We construct an eigenvector f by setting
f(n) = 1 for all n € () and let it be zero for all other group members.
Since for n € (v) we have v~ ' & (v) this is indeed an eigenvector (with
corresponding eigenvalue o = 1) and f € £2(T) since

1£ 12y = 3 1F )2 = ord(7) < +o0
€(7)

Example 1.29 (Integral Operators). Let (2, F, ) be a o-finite measure
space. This means that 2 is a countable union of measurable sets of finite
measure and hence Fubini’s theorem holds. Let K € L?*(Q x Q,K) with K
being R or C. Then!

| P = [ [ (@) dute) dut) < o0
QxQ
and hence by Fubini’s Theorme we have that for almost every x € 2
G duto) <+
meaning y — K (z,y) is in L?(Q) so that for all f € L?(Q)
Tk f(x /nyxydu()
is well defined a.e. Writing K, (y) = K(z,y) we estimate
1T f 220 = /Q (Ko T dpu(a)

< /Q VK a2 1112y i) = 1K 2y | F 2

which shows that Tk defines a bounded operator on L?(Q) with norm
1Tl < 1K |20

Let us also compute the adjoint of Tk

(Ti f.g) = / Ty f(2)g() dpa(z)

- / / T@) F @)K (2, y) du(y) du(z)
/f / K(z,y)du(z) dpy = (f, Tr+g)

with K*(z,y) = K(y,z). In particular, Tk is self adjoint if and only if
K(z,y) = K(y,z)  Va,y €

IThe equality is due to Tonelli’s theorem
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Chapter 2. Hahn-Banach and consequences
2.1. HAHN-BANACH, ANALYTIC FORM

Hahn-Banach refers to a set of results that assert the existence of con-
tinuous linear forms with addional properties. Whether hidden or explicit,
convexity plays always a fundemental role. We begin with a very general
result called "Hahn-Banach, Analytic Form” that concerns R-vector spaces.

Definition 2.1. A gauge' on a R-vector space V is a funciton p: V — R
such that

(1) p(ax) = ap(x), Va > 0
(2) p(z +y) < plx) +py), Yo,y eV

Remark 2.2. Observe that Vr € R the sublevels {v € V: p(v) < r} and
{v e V:p() <r} are convex.

Remark 2.3. Let C C V be a convex set with the property that Vv €
Vda > 0s.t. v€aC. Then

p(v) :=inf{a > 0: v € aC}

is a gauge function on V. In addition
{v:p(w) <1} Cc C C {v: p(v) < 1}

Theorem 2.4. Let V be an R-vector space, p: V — R a gauge, M C V a
vector subspace and f: M — R alinear form with f(v) < p(v) forallv € M.
Then there exists a linear extension? F': V — R of f with F(v) < p(v) for
allveV.

First, some informal explanation why this theorem intuitively ought to
be true: Starting from the given functional f we pick some zp € V'\ M and

construct a new functional f: M + Rxg — R via

fv+txg) = f(v) +ta

whereby we will show that there exists an o € R so that ]7 < pon M+ Ruxy.
Intuitively we would want to iterate this construction until our functional is
defined on all of V', but this idea already hints that the proof will somehow
involve the Axiom of Choice (or one of its equivalent formulations) since we
would need some kind of transfinite induction. The proof below will not
proceed by transfinite induction, but the idea is still the same.

We will make use of Zorn’s lemma which is a statement about (partially)
ordered sets which we recall now.

Let P be a set with a partial order <. A subset QQ C P is totally ordered
if Ya,b € Q either a < b or b < a. We say that ¢ € P is an upper bound
for a subset Q C P if a < ¢ for all a € Q. We say that m € P is mazimal

LAlso called a sublinear map.
2The term linear extension already encompasses that F|,, = f.
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if m < x = =z = z. Finally we say that P is inductive if every totally
ordered subset () C P has an upper bound. The following is the Zorn’s
lemma which is equivalent to the Axiom of Choice:

Lemma 2.5 (Zorn’s Lemma). Let P # @ be ordered and inductive. Then
P admits a maximal element.

With this we turn to the proof of Theorem 2.4.

Proof. Let
P ={(h,D): D CV is an R-linear subspace
h: D — R is linear, M C D,
hla = f, h(v) < p(v) Yov € D}.
We order P in the following way:
(h1,D1) < (h2, D2) <= D1 C Dy and ha|p, = hi.

Clearly P # @ since (m, f) € P.
Let us verify the hypothesis of Zorn’s lemma. For any totally ordered
subset @) C P define
E= |J D

(h,D)eQ

Since @ is totally ordered, F is a R-vector subspace of V. Define j: £ — R
by jlp = h whenever (h, D) € Q). Now one verifies easily that (j,E) € P;
it is clearly an upper bound for (). By Zorn’s lemma there is a maximal
element (F, E) € P. All we have to show is that £ = V, which we will do
by contradiction.

Suppose E # V and let xg € V\ F and D := E+Ruxg. Define h: D — R
by

h(v + tzg) = F(v) + ta Yve E,teR

whereby a = F'(z¢) is a constant yet to be determined so that h < p on D.
We need o € R s.t.

F(v) 4+ ta < p(v + txo) Yve E, teR.
Using the homogeneity of p (and linearity of F'), this amounts to the follow-
ing inequalities:
(1) F(z) + a < p(z + xo) Ve e E
(2) F(x) — a < p(x — ) Ve € E.
Combining these we want to show that

sup(F'(y) = p(y — 20)) < inf (p(z + 20) — F(x))

inf
yeE‘ zeFE

i.e. that for all x,y € E:
F(y) — p(y — w0) < p(x + 20) — F(2)



16

= F(x)+ F(y) < p(x + 20) + p(y — 70).

Now
F(z)+ F(y) = F(z +y) <plz+y) =p((z+ z0) + (y — 20))
< p(@ + xo) + p(y — o)
which yields the desired inequality and concludes the proof. |

The geometric form of Hahn-Banach for real vector spaces will be used in
the theory of topological vector spaces, in particular to establish the Krein-
Milman theorem.

For many applications to dual spaces of normed K-vector spaces, where
K = R, C, the notion of seminorms, a bit more restrictive than a gauge,
will suffice.

Definition 2.6. A seminorm on a K-vector space V is a function p: V —
[0, 4+00) s.t.
(1) p(av) = |alp(v) Vae K, Vv eV
(2) p(v1 +v2) <p(v1) +p(v2)  Vor,v2€V.
We have the following form of Hahn-Banach valid for K-vector spaces.

Theorem 2.7. Let V be a K-vector space, p: V' — [0,4+00) a seminorm,
M C V a K-vector subspace and f: M — K a linear form with |f(v)| <
p(v) for Vv € M. Then there exists a K-linear extension F': V — K with
|F(v)] < p(v) for Vv € V.

Proof. We can assume that K = C since for K = R the theorem holds by
invoking Theorem 2.4, since F'(v) < p(v) and due to absolute homogeneity
we have —F (v) = F(—v) < p(—v) = p(v).
Now, by writing
f(v) = filv) +ifo(v) VveV
for fi, fo: M — R, we not only see that f; and fy are R-linear, but C-
linearity of f also enforces

fi(iv) +ifa(iv) = f(iv) = if(v) = ifi(v) = fa(v)

meaning fa(v) = — f1(iv). Hence we can solely focus on f; which satisfies

A1(0)] < V/(Re f1(0))2 + (Im fo(v))? = | £(v)] < p(v)
so there exists a linear extension Fy: V — R with
Fi() <plv) VeV,

We now set F(v) := Fi(v) — ¢F(iv) which is indeed C-linear and extends
f (due to our above observation). To estimate |F| we do a little trick: Pick
0 € [0,27] so that e F(v) = |F(v)], i.e. we rotate the complex number F(v)
onto the real-axis. This gives us

F ) = ¢F(v) = F(e*v) £ Fi(e“) < p(e) = [¢[p(v) = p(v)
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whereby in (¥) we used that F(e?v) is purely real. [ |

We draw some immediate consequences which can loosely be summarised
by saying tha a normed K-vector space has enough continuous linear functi-
noals.

Corollary 2.8. Let (V, ||-||) be a normed K-vector space, M C V a subspace
and f: M — K continuous linear. Then there is F': V — K continuous
linear with F|,, = f and ||F| = || f].

Proof. By hypothesis |f(v)| < ||f|||lv]|] for all v € M whereby || f]| is the
operator norm of f constraint to M, i.e.

IfIl = sup [[f(2)]l.
xeM
=<1
Let p: V' — [0,400) be defined by
p() = [[fllllv]-

Then p is a norm, in particular sublinear, so that Theorem 2.7 applies to
obtain a K-linear form F: V — K with F|,, = f and |[F(v)| < p(v) =
|| flll|v]| for all v € V. This implies

[f[l' = sup |f(v)| = sup [F(v)| < sup [F(v)] <|f]
eM M eV

v ve v
lvll<t vll<1 lvll<1
demonstrating || F'|| = || f]] [ |
Corollary 2.9. Let V be a normed space and vy € V. Then thereis fy € V*
with
(1) N foll =1

(2) fo(zo) = [|xoll-

Proof. Let M = Kzg and f: M — K, f(txo) = t||zo||. By Corollary 2.8
there exists fy € V* with fo|,, = f, in particular fo(zo) = ||zo|| and

Ifoll = 1Ifll = sup |f(tzo)|l =1

It1< o

The next statement is an immediate consequence of 2.9:

Corollary 2.10. Let V be a normed space, then for all v € V:
[0l = sup{[f(v)|: f € V", [If| <1} = max{[f(v)|: f € V", [If]| <1}

This corollary allows us now to compute hte norm of hte adjoint 7%: W* —
V* of a bounded linear map T: V — W.

Corollary 2.11. We have ||[T%|| = ||T|.
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Proof. Plugging in the definitions we compute’
T[] = sup | T*(A)]|
AeW*
A<t
— sup sup [T*(\)(v)|

A< floll<1

= sup sup |A(Tv)]
lvll<T fIAll<1

By Corollary 2.10 we have

sup [A(Tw)| = |[T]]
IMl<t

which together with the above computation implies

1T} = sup |T(v)[| = [T

loll<1

Another application of 2.10 is to the bidual of a normed space V: this
is by definition V** = B(V*,K) and the point is that we have a canonical
map

J: V=V JWw)(A) = Av)

Proposition 2.12. The map J: V — V** is a K-linear isometry into the
Banach space V**.

Proof. First, we have that
()M = [A@)] < [[Allflo]]
which shows that J(v) € (V*)*. Next we have by 2.10:

17 ()]l = sup [A(v)] = [Jv]l.
IMlI<1

Spaces for which J is surjective are called reflexive, they are automatically
Banach spaces.
Now we turn to some important examples of dual spaces.

1Suplrema are interchangable: Let f: A x B — R for sets A, B; then

sup sup f(a,b) = sup sup f(a,b).
a€AbeEB beBa€cA

To see this, note that for any a € A we have

f(a,b) <sup f(a,b) = sup f(a,b) < supsup f(a,b)
a€EA beB beBacA

and taking sup,., on both sides we obtain the first inequality. The other one can be
obtained by applying this argument to b € B.
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Example 2.13 (The dual of LP(Q2), 1 < p < +00). Let 1 < p < +o0 and ¢
the conjugate exponent, that is

S4S=1
poq

Then Holder’s inequality shows that every g € L1(2) gives rise to a contin-
uous linear function on LP(Q2) by

0(f) = /Q F(2)g(x) du(z)

with [[€]] < [[g]l La(e)-
In fact:
Theorem 2.14. For 1 < p < +oo the map
LUQ) — (LP(Q))", g iy
is an isometric isomorphism.
Proof. Cf. Stein-Shakarchi [SS11], section 1.4. [ |
Corollary 2.15. For 1 < p < +o0, LP(Q) is reflexive.

We will see later on that for Banach spaces there is a relation between
uniform convexity and reflexivity.

Example 2.16. Let X be a locally compact Hausdorff space. A continuous
function f: X — R is said to vanish at infinity if for all € > 0 there exists
some compact set K C X s.t.

|f(z)] <€ Vee X\ K.

Let Cy(X, C) be the space of continuous C-valued functions that vanish at
+00. Endowed with the norm

[fll6 := sup | f(z)]
zeX

Cy(X) becomes a Banach space.
The dual space Cy(X)* is described by the space of complex measures: a
complex measure is a set function

w: Bx — C

defined on the o-algebra Bx of Borel sets s.t. for all £ € Bx and any
countable partition F = LlneN E, with E, € Bx we have

p(E) = p(Ey).
n=1
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Since this series is assumed to converge for any permutation of the sum-
mands, it converges absolutely. One defines then the total variation measure
of 1 as

o0
Hl(B) = sup{ S (B B = | ] Bu, By € By |
n=1 neN
and shows that |u| is a positiv measure on Bx with |u|(X) < +o0.

In order to define the integral of say a bounded Borel function f: X — C
w.r.t. p, one reduces oneself to the case of positive measures (where the
Lebesgue integral is available) in the following way. First one can evidently
decompose p as

po= 1+ i
where p1, o are both complex measures with values in R: such measures
are called signed measures. Given a signed measure v: By — R define then

1

vt = ~(Jv| +v)
2

v = %(\y\ _ ).

Then v, v~ are positive measures with v (X), v (X) < +oo and v =
vt —v~. Thus, given a complex measure p, we can decompose it as follows
into a combination of positive measures:

po= (i —py) +ius —py)
and hence fQ f dp makes sense for say any bounded Borel function. Finally,

we say that p is regular if its total variation measure |u| is a regular Borel
measure. Then:

Theorem 2.17. (Riesz Representation) For every bonded linear map ®: Cy(X,C) —
C there is a unique complex regular measure u defined on Borel sets such
that

o) = [ fan  viecyx.C)
In addition ||®| = |u|(X).

2.2. THE PROBLEM OF MEASURE

The Hahn-Banach theorem can be used to show that there is a finitely
additive set funciton defined on all subsets of R? that agrees with Lebesgue
measure on measurable sets and is translation invariant. However, this set
function cannot be o-additive and this is connected to the existence of non-
measurable sets.

A deeper fact is that it is not possible to extend the Lebesgue measure
on R? (d > 3) to a finitely-additive measure on all subsets of R so that it
is both translation and rotation invariant.
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Here we are going to treat the case d = 1 which proceeds in two steps,
the first of which contains the main idea based on the use of Hahn-Banach;
the second step, more formal can be read in Stein-Shakarchi (chapter 5.4 of
[SS11]).

Let R/Z be the group of real numbers mod 1, that is, the quotient of
the abelian group R by the subgroup Z and 7: R — R/Z the canonical
projection. Let

C*(R/Z)={f:R/Z — R: f is bounded}.

We say that f € £*°(R/Z) is measurable if f o m: R — R is £'-measurable
w.r.t. the Lebesgue measure £ so that £1([0,1]) = 1. For f € {*(R/Z)
measurable we define

1
1'_ OT I\ 1./17
[R/Zfdﬁ .—/0<f () dC ()

which exists since f o7 is bounded and measurable.

Next we have an action of R by translation ¢*°(R/Z) defined as follows:
observe that for x € R/Z and h € R, +h € R/Z is well defined. Then for
feL®(R/Z), set fr(z) = f(x+ h).

Theorem 2.18. There is a linear map
I:t*(R/Z)—- R

s.t.

(1) I(f)20if f>0

(2) I(f) = fR/Z fdL! whenever f is measurable

(3) I(fn) =I(f) for all h € R and f € {*(R/Z).
Proof. This is going to be an application of Hahn-Banach (Theorem 2.4)
with V =/(*°(R/Z) and M = {f € {*(R/Z): f measurable} with the linear

form

Iy: M - R, Iy(f):= fdct.
R/Z

The key now is to find the appropriate gauge function p: V' — R s.t. Iy(f) <
p(f) for all f € M. Banach’s ingenious construction goes as follows: For
every pair (A, «) consisting of a finite set A and a function a: A — R define

1

Mg (f) := sup —( fac—i—aa))

(4 veryz |4 ;4 ( (a))

for f € (*°(R/Z) where |A| is the cardinality of A. Define then
p(f) == inf{ M40 (f): A finite, a: A — R}.

Observe that since

—[flloe € Maa(f) < || flloo
p(f) is well defined.
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To establish that p is a guage it will be convenient to define for f €
{oo(R/2Z),

S(f):= sup f(z)€R.
z€R/Z

Then S satisfies the following properties:
(1) S(cf)=cS(f)if c=0and f € (>*R/Z).
(2) S(fi+ f2) < S(f1) + S(f2) for all f1, f2 € (*(R/Z)
(3) S(fn) =S(f) forall h € R and f € {*°(R/Z).

It is then convenient to rewrite M4 o(f) as S(ﬁ > wea fa(a)). From this we
deduce
(1) Mao(cf) =cMao(f) forallc>0and f € (>°(R/Z)

(2) Mao(fi+ f2) < Mao(fi) + MA,a(f2) for all fi, fo € {°(R/Z)
(3) Maa(fn) = Maa(f) for all h € R and f € £2(R/Z).

Property (1) implies immediately that for all ¢ > 0 and f € (*°(R/Z)
plef) = ep(f).

Concerning the second defining property of a gauge we make the following
observation: let (A4, a), (B, 3) be maps from finite sets to R. Define

a+p:AxB—R, (a,b)— ala)+ 5(b).
Then for all g € £*°(R/Z) we have

(1) MAXB,Oc-‘rﬁ(Q) < MA,a(g)
(2) MaxB,a+s(9) < Mpa(9).

We show (1), as (2) follows from (1) by interchaning the roles of (A, «) and
(B, ). To this end we compute

1
MA o g) = S( Ja(a >
x B +B( ) |A||B| (;4 (a)+B(b)

beB

:S(|B\ Z(]A\ Zga(@) b)

< *ZS((*Z%@) )
Bl beB 4] acA B(b)
1 1
= T S( gaa>:MA,ag
|B| Z A Z (a) (9)
beB acA

which shows (1).

Let now fi, fo € {°(R/Z), e > 0 and (A, «), (B, ) s.t.

Mao(f1) <p(f1)+e
Mps(f2) <p(f2) +e.
Then

p(f1 + f2) < Maxats(fi + f2)
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MaxB,ats(f1) + MaxBats(f2)
Mao(f1) + Mpg(f2)
p(f1) +e+p(f2) +¢

which implies p(f1 + f2) < p(f1) + p(f2) and shows that p is a gauge.
Next we observe that for all h € R and f € (*°(R/Z) measurable, we

have
fa(a dL!
bl =1 /R/ZZ

/R/z (\A| Z Ja@ ) L' = Maa(f)

which by taking the infimum over all (A,«a) implies Io(f) < p(f) for all
feM.
Let I: £*°(R/Z) — R be the linear form extending Iy and satisfying

I(f) < p(f)

for all f € (*°(RZ) given by Theorem 2.4.

Now we show that I satisfies properties (1), (2) and (3) of Theorem 2.18.
Clearly, if f(x) < 0 for all z € R/Z then My (f) < 0 and hence p(f) < 0.
Thus I(f) < p(f) <0. If now f(z) >0 for all z € R/Z we have —f(z) <0
for all x € R/Z, hence I(—f) < 0 and by linearity of I, I(f) > 0 which
proves (1). Property (2) is immediate since I extends Ij. [ |

<
<

A

For (3) we claim that p(f — fr) < 0 for all /*°(R/Z) and h € R. Indeed,
let N > 1in N arbitrary, Ay = {1,..., N} and ay(j) = 7N. Then the sum
entering the definition of M4, o, (f) is

1Y 1Y
N 2 = M@+ k) = 5 3 (f(o+jh) = fo+ (G +1)h)
j=1 =1

1
= (@ +h) = [+ (N +1)h).

And hence
2 f oo N—oo
Mayan(f = fn) < H]\y

which implies p(f — f) < 0. Thus I(f — f5) < 0. Replacing f by f_, and
then —h by h we get I(fn — f) < 0 and by linearity I(f) = I(f) for all
heR and f € (>*(R/Z).

For E C R/Z, we say that F is measurable if 15 € ¢*°(R/Z) is and define
its Lebesgue measure

0

LYE) = /R/z 1gpdl'.

Then we have the follwing immediate corollary from Theorem 2.18.
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Corollary 2.19. There is a non-negative set function X defined on all sub-
sets of R/Z s.t.

(1) X(El U E») = MNEy) + /)\\(Eg) for all disjoint subsets E1, Fo

(2) X(E) Ll (E) if E is measurable

(3) ME +h) = A(E) for all h € R and E € R/Z.
From this it is not difficult to deduce
Theorem 2.20. There is a function A: P(R) — [0, +oc] with the following
properties

(1) /\(E1 U Ey) = ME1) + ME») whenever Ey, Ey are disjoint

(2) )\( )=LYE /) whenever E is Lebesgue measurable.

(3) )\(E+h)—)\( ) for all h € R and E C R.

Corollary 2.19 can obviously be rephrased in terms of the existence of a
finitely additive set function on S' that is SO(2)-invariant measure on S?.

In contrast to the action of SO(3) on S? one has a paradoxical decompo-
sition as was shown by Banach-Tarski.

Theorem 2.21. There is a countable subset E C S?, a partition
S2\E=AUAyUA3U Ay
and two rotations a,b € SO(3) such that
a(A2) = Ay U A3 U Ay
b(Ag) = A1 U AU Ay

Corollary 2.22. There is no SO(3)-invariant additive set function on S?
extending the Lebesgue measure.

Proof. If A: P(S?) — [0,00) were such a set function we would first have
A(E) = 0 since E is countable. Then

AA2) = Aads) = A(Asz) + A(As) + A(Ay)
which implies X(Ag) = /):(A4) = 0 and similarly,
A(As) = A(bAg) = M(A1) + A(A2) + A(Ag)

implying )\(Al) = /)\\(Ag) = 0. Thus
A(S%) = A(E) + MA1) + M(A2) + A(43) + A(As)
which implies /\( ) =0 for all E C S%. [
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Chapter 3. Compact Operators, Spectral Theorem

The main result of this chapter is the spectral theorem for self-adjoint
compact operators on a Hilbert space. In fact many operators arising ” in
nature” are compact, examples will arise in the first section of this chapter,
while the second is devoted to the proof of the spectral theorem.

3.1. COMPACT OPERATORS AND HILBERT-SCHMIDT OPERATORS

Certain natural classes of operators between Banach spaces have much
stronger properties than being bounded.

Definition 3.1. A (bounded) operator T': V' — W between Banach spaces
is said to be compact if T'(B<1(0)) is a compact subset of W.

This is equivalent to requiring that T'(B) C W is compact for whenever
B C V is bounded!.
The fundamental examples is:

Example 3.2. If T: V — W has finite rank then T is compact. Indeed,
R(T) := im(T) is finite dimensional and T'(B<1(0)) is closed and bounded;
it is compact by Heine-Borel.

Let V, W be Banach spaces and K (V, W) C B(V, W) the subset consisting
of compact operators. Then:

Proposition 3.3. (1) K(V,W) is a subvector space of B(V,W).
2)If A e B(V,V), T € K(V,W) and § € B(W,W) then STA ¢
K(V, W)
(3) K(V,W) is closed in B(V, W) for the operator norm.

Before we get to the proof, let us recall a characterisation of compactness
particularly well suited for complete metric spaces:

Proposition 3.4. A metric space (X,d) is compact if and only if it is
complete and totally bounded. X is totally bounded if for all € > 0 there
exists some finite subset A C X s.t.

X = ] B<(a)
acA
i.e. X is the union of finitely many balls of radius e.

For a proof see 8.1. Now lets turn to the proof of Proposition 3.3:

Proof. (1) is follows from continuity of scalar multiplication and addition.
For (2) note that T'A is again a compact operator since for any bounded set
E C V also A(E) is bounded and hence T'(A(F)) is compact. Moreover, if

IThis equivalence follows from the identities
T(B<r(0)) = T(rB<1(0)) = rT(B<1(0))
and rX = rX whereby rX := {rz: z € X}.
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K:V — W is any compact operator then SK is also a compact operator
since

S(K(B«(0))) ¢ S(K(B<1(0)))

whereby the set on the right side is compact, being the image of a compact
set under a continuous transformation. Lastly, since closed subsets of com-
pact sets are again compact in a Hausdorff space this concludes the proof of

(2).
(3) Let T = lim,,—,o0 T}, with T}, compact for n > 1. We show that
T(B<1(0)) is totally bounded. Let e > 0 and n s.t. ||T,, — T'|| < €. For every
x,y € B<1(0) we have then:

1T () =TIl < [T(x) = Tn(@)[| + [ Tn(z) = Tu()|| + [[Taly) = T(w)]l
< 2T = Tl + [T (2) = Tu(y) -

Now T, (B<1(0)) is totally bounded, hence IF C B«1(0) finite s.t. for all
y € B<1(0) there exists some z € F' s.t.

[T () = Tu(y)ll < €

which implies that for all y € B<;1(0) there exists some = € F s.t.

1T (z) =T ()|l < 3¢
and shows that T'(B«<1(0)) is totally bounded. [

Corollary 3.5. If T' € B(V,W) is the limit of a sequence (7},),>1 where
each T), has finite rank, then 7' € K(V, W) is compact.

Example 3.5.*) Let H be a separable Hilbert space with orthonormal
basis {ex: k > 1} and define

T: (—D Cek — (—D Cek, T(ek) = )\kek
k>1 k>1

with (Ay)n>1 C C. Then T extends to a bounded operator H — H iff

sup |A\g| < +o0

E>1
which then coincides with ||T'||. Furthermore, we have that T is compact iff
lim, o0 Ap, = 0.

For diagonal operators in a Hilbert space as in the above example, bounded
operators correspond to bounded sequences, and compact operators to se-
quences vanishing at infinity. We are going to define a class of operators
which in the diagonal case would correspond to the condition Y00 ; [A,|? <
+00. These are the Hilbert-Schmidt operators.

Definition 3.6. Let H be a separable Hilbert space with orthonormal basis
{ex: k € N}. Then T € B(H,H) is called Hilbert-Schmidt if

[o.¢]
Z (Ten, em)|* < 4o00.

n,m=1
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Lemma 3.7. If {f;.: k € N} is another orthonormal basis we have

Y KTenem)? = D" (T fa, fu)?

n,m=1 n,m=1

Proof.

o o oo
D UTenem)> =D ||Tenl?
n=1m=1 n=1
oo (0.)
ZZ Tenafm

- S e TP = 3 IT
m=1n=1 m=1

and the last term can now be expanded in terms of the basis {fi}ren to
conclude. |

Definition 3.8. If T: X — H is Hilbert-Schmidt we define its Hilbert-
Schmidt norm by

1/2
7= (3 HTenen)?)
n,m>=1

Corollary 3.9. If T: H — H is Hilbert-Schmidt, so is 7% and ||T]|2 =
17 ][2-

As one can guess from Example 3.5.(*) the operator norm and the Hilbert-
Schmidt norm are quite different. However, we always have the following
inequality.

Lemma 3.10. If T € B(H,H) is Hilbert-Schmidt then ||T']] < ||7|2.

Proof. For x € H we find (using the triangle inequality)
1/2

00 ] 1/2 , o©

7o) < 3 N enliTent < (S lmen?) (S 17enl?) = iz
n=1 n=1 n=1

|

We conclude the following:

Proposition 3.11. If T: H — H is a Hilbert-Schmidt operator, T" is com-
pact.

Proof. Let {e,: n € N} be an ONB. Define T,,: B(H,H) b

er, 1<k<n
T”(e’“):{o k>n+1
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and notice that it has finite rank. In addition 7;, — T is Hilbert-Schmidt
with
[ee]
1T =Tl3= Y IT(en)* =0
k=n+1
since by definition > o2, || T(en)||> < 4+o0. Using the previous Lemma we

conclude that ||T;,, — T'|| — 0 for n — oo proving that T is compact (cf. (3)
of Proposition 3.3). [ |

From this we are going to get a large class of compact operators.

Proposition 3.12. Let (Q, F, i) be a o-finite measure space, K € L?(£ x
O, px p) and Tk : L?(Q) — L2(Q) the corresponding bounded operator we
have already discussed in Example 1.29. Then Tx is Hilbert-Schmidt, in
particular compact and ||Tk|l2 = || K|l z2(0xq)-

Proof. We assume that § is s.t. L?(f2) is separable, so let {f,: n € N} be
an ONB of L?(€2). Recall that by Fubini, for almost every = € Q, K,(y) :=
K(z,y) is in L?(2). We compute (employing monotone convergence)

STk fallZogey = 3 / (T fu) @) du(z)
n=1 n=1 Q
—;/Q|<K$,fn>| dyu(z)
_ / S [(Ke, T [ dpu(a)
Qp=1
_ / S, £) P du(e)
Qn:l

— [0y 0(5) = 1K 22

3.2. SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

If H is a K-Hilbert space and T' € B(H,H) is self-adjoint, if dim(#H) <
400 we know that all eigenvalues of T' are real and there is an ONB of
‘H consisting of eigenvectors of T. We are going to generalise this result
by replacing the hypothesis dim(#) < +oo by the hypothesis that T is
compact.

Fo simplicity of notation we will assume that all our Hilbert spaces are
C-vector spaces. Analogous results hold over R.

Let V be a Banach space and 7' € B(V, V). For A € C let

Vyi={veV:T(v) = v}
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Then V), is clearly a closed subspace of V' (since T is continuous). Recall
that A is an eigenvalue of T" if V), # {0} in which case the elements of V) are
called eigenvectors of T' corresponding to the eigenvalue A.

Example 3.13. Let H = L?([0,1],C) where we take the usual Lebesgue
measure A on [0,1]. Define T'f(z) = zf(z) for f € H. Then T is clearly
bounded and self-adjoint since for f, g € H we have

1 1 -
(Tf.g) = /0 £ (2)g(@) d = /0 f(2)2g(@) dx = (f, Tg).

However, if T" had an eigenvalue o € C it would satisfy af(z) = xf(z) for
a.e. x € [0,1] so that (« — z)f(z) = 0 a.e. implying f(z) = 0 a.e. because
(a —x) #0 a.e.

Theorem 3.14 (Spectral Theorem). Let T € B(H,H) be compact self-
adjoint where #H is a Hilbert space. Then H has an ONB consisting of
eigenvectors of T'. In addition: dim(#)) < +oo for all A # 0 and

{ANe C: |\ > ¢, dim(Hy) > 0}
is finite for all € > 0.

The proof is based on two lemmas, one of which is a verification whereas
the second one is trickier.

Lemma 3.15. Let T' € B(H,H) where H is a Hilbert space.

(1) If T =T* and W C H is a T-invariant subspace, so is W+=.

(2) If T =T then (T'w,v) € R for all v € H; in particular all eigenvalues
of T are real.

(3) 1T = sup{|(T(0), w)l: o]l < 1, ] < 1.

(4) f T =T* and X # « then H) and H, are orthogonal.

Proof. (1) For u € W+ we find
(Tu,w) = (u, T*w) = (u, Tw) =0 Ywe W

since Tw € W.
(2) Indeed:

(Tw,v) = (v,Tv) = (v, T*v) = (Tv,v)
(3) Using Corollary 2.10 we compute

I} = sup [|Tw[| = sup sup{|f(v)|: f e H", |[f]| <1}

lloll<1 llvll<1
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Now by Riesz representation theorem all linear forms in H* are of the form
x +— (x,7) for some y € H reducing the above to!

I = sup sup [(Tv,w)|.
loli<t flwfl <1

(4) For all v € H) and w € Hy:
Mo, w) = (Tv,w) = (v, Tw) = alv,w) = a{v,w)

but since A # « we must have (v, w) = 0. |

The next lemma gives the key to the whole theorem.
Lemma 3.16. Let T' € B(H) with "= T*. Then

1T = sup{[(Tv, v)|: v € H}.
Proof. Let s := sup{|(Tv,v)|: v € H}; then clearly s < ||T']|. We want to
show that
[(Tw, w)| < sjllf|w]]

which by (3) of the previous lemma implies the desired equality. Since
multiplying w by some a € C with || = 1 does not affect the above
inequality, we may assume that (Tv,w) € R. Now, from T = T* and
(Twv,w) € R we deduce

(T(v+w),v+w) = (Tv,v) + 2(Tv,w) + (Tw,w)
(T(v—w),v—w) = (Tv,v) — 2(Tv,w) + (Tw,w)
which combined yields
AT, w) = (T(v+w),v+w) — (T(v—w),v—w).
Hence
[(To,w)] < Z(l0 +wl? + o= wl?) = S(o]* + ).
Lastly, to turn this sum into our desired product we will again exploit some

symmetry, namely that replacing v and w simultaneously by y/av and %

for some a > 0 we find:
1
[(To,w)| < 2 (alloll? + ~[lw]?).

Since we may assume v # 0 we can set a = % and get

(T, w)| < sjoll[[wl]

Now, let us turn to the proof of Theorem ?7.

IRecall that for all yeH

Iz = (@l = sup [z, y)| < [lz[llyll
lzll<1

and for z = y this holds with equality, i.e. ||[z — (z,9)]|| = |ly]|-
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Proof. (1) We claim that either ||T']| or —||T|| is an eigenvalue: We may
assume T # 0; let (v,)n>1 be a sequence with |[v,]| = 1 for all n > 1 and
lim,, oo [{(T0n, vpn)| = [|T]|. We may assume, passing to a subsequence if
necessary, that lim, .o (Tv,,v,) = A € R (it is a real number by (2) of
Lemma 3.15) and proceed to show that A is an eigenvalue. Clearly A\ = ||T'||
or A = —||T||. Since T is compact, again modulo passing to a subsequence,
we may assume lim, ., Tv, = w. Since A # 0 we get that w # 0. Next we

compute
| Tvy, — )\UnH2 = HTUHHQ = 2MTvy, vp) + )\2||UnH2
<27 = 2M (T, v,)
which together with lim,, oo (Tvn,v,) = A and A2 = ||T|? implies
lim ||Tv, — Av,|| = 0.
n—oo
Combining this with lim,,_.., Tv, = w we obtain

lim A\, =w < lim v, = —
n—oo n—oo

and hence T'(w) = Aw.

(2) By Zorn’s Lemma we can choose an orthonormal set A C H of eigen-
vectors which is maximal among all orthonormal sets of eigenvectors. Let
(A) be the C-vector subspace of H spanned by these vectors and W := (A)
its closure. We want to show that W = H. Indeed, if this was not the case we
would have W+ # {0} and since T(W) C W we have T(W+) c W+ (by (2)
of Lemma 3.15). In addition W+ is a Hilbert space and T'|y,. : Wt — W+
is self-adjoint and compact. Hence, by (1) T,,. admits an eigenvector,
contradicting the maximality of A.

(3) Let € > 0 and define

W .= @ H)\.
|AI>e
Observe that the sum (—BI Aze ‘H is direct since for all a # 8 we have H, L
Hp (by (4) of Lemma 3.15). We are going to show that dim(WW) < +o0 by
showing the inclusion
T(B%(0)) > BY(0)

which implies that BY(0) is compact, so dim(W) < +oo.
Since Hy C H is a closed subspace (by continuity of T'), for A € R let
Py: H — H, be the orthogonal projection onto Hy. Let v € Bgﬁ.(()); then

v =35z Pa(v) with
ol =D 1P

|AI>e

INote that (Twn)ns1 C T(B<1(0)) and by compactness of T the set T(B<1(0)) is
compact.
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Set w ="\ 5c + Py (v) which exists since

2
v
ol = Y IR < 5 3 IO = 1<
[A|=e [A|ze
and
1 1
rw=1(3 h0) = Y 1TR0) = Y ) =
|\|>e [\|>e |A\|>e
This shows T(BY%(0)) > BX(0). [

Example 3.17 (Unitary representations of compact groups). This examples
is meant to give a glimpse into the field of unitary representations and more
specifically in the problem of decomposing them into irreducible ones.

We assume that (X, d) is a compact metric space on which a group G
acts by isometries (distance preserving bijections):

GxX—X, (g,x)— gz

with d(gz, gy) = d(z,y) for all g € G and x,y € X. We assume in addition
that G preserves a regular positive Borel measure p on X.
Fundamental example of such a situation is: X = S? with d being the
angular distance on S2, £ the Lebesgue measure! on S2 and G = SO(3).
Now back to the general setting, for g € G and f € L?(X, ) define

(9)f(z) = fg~ " @).
As we have already seen in Example 1.28, m(g) is an unitary operator of
L*(X), since (cf. Theorem 8.3)

Im(9) F12: / o) du(e)

— [ 1f@P dg; ntz)
X
= [ V@R duto) = 1l
where by used that g preserves the measure p, i.e.
g9: ' W(E) = p(g(E)) = w(E).
Hence
m: G — U(L*(X))

is a group homomorphism.
Task: Decompose L?(X) into an orthogonal sum of closed subspaces that
are invariant under 7(g) for all ¢ € G and "minimal” in a reasonable sense.

IThe Lebesgue measure on S™ can be defined by
LE)=X"({tz:z € E,0<t<1}) VECS"
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Let now K € C(X x X) be a continuous kernel such that K(gx, gy) =
K(z,y) for all g € G and x,y € X. We claim now that

W(g)TK = TKﬂ'(g).

Indeed, a direct computation yields

(m(9) Tk f)(x) = Tk f9™"2)

_ /X K(g7'2,y) f(y) duly)
_ / K (z,9y)f(y) du(y)
X
_ /X K(x,y)f(97"y) duly) = (Ticm(9)) f (@).

This has the following remarkable consequences: If K(z,y) = K(y,x) for
all 7,y € X; then Tx: L?(X) — L?(X) is a compact self-adjoint operator.
For every eigenvalue A # 0 of Tk, the corresponding finite dimensional
eigenspace Hy C L?(X) of Tk is invariant under 7(g), g € G.

In fact in our situation there is a pletora of such kernels, namely if
k:[0,00) — R is continuous then K(z,y) := k(d(x,y)) is such a valid
kernel.

This leads to the following theorem.

Theorem 3.18. L?(X) is a direct orthogonal sum of 7(G)-invariant (irre-
ducible) finite dimensional subspaces.

In the case of SO(3) acting on S? this decomposition takes the following
concrete form: Recall that a polynomial P € Rz, vy, 2] is harmonic if AP =
0 where

A =0+ 0; + 07
is the Laplace operator. Let then
Hp ={Plg2: P: R? — R is homogeneous of degree n and harmonic}.
Then:
L*(S%) = @

n=0

and the action of SO(3) in H,, is irreducible.

3.3. MERCER’S THEOREM

We begin with the current terminology belonging to this context. A kernel
on a set X is a function K': X x X — R it is symmetric if K (z,y) = K(y, =)
for all z,y € X.
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Definition 3.19. A symmetric kernel K on a set X is positive semidefinite
if for all n > 1 and z1,...,z, € X, the symmetric matrix (K (xg,z;))k; is
positive semidefinite. That is, for all ¢1,..., ¢, € R,

n
Z cpci K (g, xj) > 0.
k,j=1
The case n = 1 implies K(z,z) > 0 for all x € X (3.20).
Example 3.21. If H is a R-Hilbert space and ¢: X — H is any map, then
K(z,y) := (p(x), ¢(y))
is a positive semidefinite kernel on X.

In our context we will take (X, d) to be a compact metric space endowed
with a regular Borel probability measure y € M (X). Given K € C(X x X)
continuous we know from Proposition 3.12 that the operator

Tyt LX) — I3(X, 1), Ticf(x) = /X K(2,9)f () du(y)

is Hilbert-Schmidt and hence compact. If in addition K is a symmetric
kernel, T is self-adjoint and the spectral theorem (Theorem 3.14) applies.
Observe that our hypothesis on X and x guarantees that L?(X) is separable.

Theorem 3.22 (Mercer). Let (X, d) be a compact metric space, u € M*(X)
Borel regular such that for all U C X open non-empty pu(U) > 0. Let K €
C(X x X) be a continuous positive semi-definite kernel on X. Then there is
an ONB {¢,, }n>1 of ker(Tk)* consisting of continuous eigenfunctions of T
and if Ay is the eigenvalue corresponding to ¢y then A\ > 0 for all £ > 1. In
addition,

K(‘Ta y) = Z )\nﬁpn('r)(pn(y)
n=1

the sum being absolutely and uniformly convergent.

Observe that Tk being Hilbert-Schmidt gives us

oo o0
Z)‘i: Z |<TKSDnv<Pm>|2<+OO
n=1

n,m=1

Corollary 3.23. In the situation of Theorem 3.22 we have
o
K("Ev {L‘) = Z Angpn(l‘)Qa
n=1

with uniform convergence on the right hand side. In particular

;)\n = /X K(z,z)du(x) < +o0.
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We proceed with the proof of Mercer’s theorem by first showing the fol-
lowing lemma whose proof is left as an exercise.

Lemma 3.24. Let (X,d) and u € M!(X) be as in Mercer’s theorem. In
particular, u(U) > 0 for nonempty open U C X. Given a symmetric K €
C(X x X), the following are equivalent:

(1) K is positive semidefinite.
(2) For all f € C(X) we have

//f K (z,y) du(z) du(y) > 0.

(3) (T f, f) =0 forall fe L?(X).

Proof. (1) = (2) Let f € C(X) and € > 0 be arbitrary. By uniform con-
tinuity of K and f we can find § > 0 s.t. for all z1,z2,y1,y2 € X, (z2,y2) €
B_§(x1) X B<s(y1) implies that |K (z1,y1)— K (z2,y2)| < € as well as | f(x2) —
f(x1)] <e. Pick z1,...,2, € X s.t. |U;—; Bes(x;) = X (compactness) and
turn this into a disjoint partition of Borel sets by setting M; := B.s(x1) and
My, := Bos(wk) \ Uy<jcp B<s(®i). Then we have

/ / (@) F @)K (2, ) dys(z) dp(y)

=3 [ [, @ o)ty

,Jl

= / / (0:) + ) (F(ay) + ) (K (1, 27) + 237) du(a) du(y)

,Jl

= Y Fla) ) K (1,25) 40(€) > O(E)

2,j=1

>0

with e;,¢j;, € (—¢,¢) for all 1 <i,7,k < n. We used that due to continuity
one has |f| < C; and |K| < Cy on X respectively X x X. Letting ¢ — 0
yields the desired inequality.

(2) = (3) We employ density of C(X) in L?(X) (note that due to com-
pactness C(X) C L?(X) coincides with the continuous compactly supported
functions on X). Let f € L?(X) and & > 0 be arbitrary; let ¢, € C(X) s.t
e = fllr2(x) < €. Then

(Trf, f) = (Tk(f — e+ @e), [ — = + ¢2)
= <TK(f - 905)’ (f - 905» + 2<TK(f - 905)7 905> + <TKSDEa <P5> .
—_——

>0

Now, by Cauchy-Schwarz,
(Tx (f = @e) )|l < 1Tk (f = )l 2 ll@ell L2 x)
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<K zee(xxx)If = @ellLzxy leell L2 x)
<

EHKHLOO(XXX)HSOEHL?(X)

which goes to 0 as e — 0. We used that || K|[ oo (x xx) < +o0 and [|¢e|[z2(x) —

[ fllz2(x) < +ooase — 0. A similar argument applies to the first summand.
(3) = (1) Let c1,...,¢, € R and z1,...,2, € X be arbitrary. Given

€ > 0 we choose, by uniform continuity of K, some § > 0 s.t. for any

r1,72,Y1,92 € R,

d(x1,m2) + d(y1,y2) <0 = |K(z1,y1) — K(22,2)| < €.
Now we set

n

1
e = 071 T
I = L ) P

k=1

which is well defined (since Bs(zy) is open and nonempty) and in L?(X).
We find

0< <TKf67 f5>
_ - CkCj i )
_szzl w(B<s(z))(B<s(;)) /B<5($j)/B<5(zk) K(z,y) du(z) du(y)

_ n CkCj . )
_k§1 (B<s(@r))(B<s(z5)) /B<5(xk)/3<6($j)(K( ks 25) + O(€)) dp(x) dp(y)

D e K(zp, i) + 0(e) > cxey

k.j=1 k,j=1

so letting € — 0 yields the desired inequality.

We now come to the proof of Mercer’s Theorem.

Proof. (1) We start by observing that for all f € L?(X),

zwmzémemm@

is well defined for all z € X and continuous. Indeed,

Tk f(21) = Tr f(22)] </X\K(:vhy)—K(wz,y)llf(y)\du(y)

1/2
< ([ @) - Ko dutw) 171200,

Now K: X x X — R being continuous on the compact metric space implies
uniform continuity; that is, for all € > 0 there exists a d > 0 s.t.

d(w1,22) +d(y1,92) <6 = [K(21,y1) — K(22,2)| <e.



37

In particular,
d(xth) <0 = ‘K(xlvy) - K($27y)’ <e
for all y € X which implies

Tk f(21) = T f22)] < ell fllL2(x)

(2) By the spectral theorem let { f,, },,>1 be an ONB of ker(Tx )" consisting
of eigenvectors of Tk and write A, for the eigenvalue corresponding to f;,.
Then, by Lemma 3.24, 0 < (Tx fn, fn) = A and since f, & ker(Tx) we get
An > 0 for all n > 1. Thus, we have f, = iTKfn a.e. By (1) we know
that Tk f, is continuous, hence we define @, (x) = ﬁTK fn(z) for all z € X.

Then ¢, € C(X) and ¢, = f,, a.e. This proves the first part of the theorem.
(3) Define

Kn(w,y) = K(z,y) = > Mpr(@)er(y)
k=1

Then K,, € C(X x X) and it is symmetric. We claim that K, is psd. Indeed,
for f € L?*(X) we have

(T, o ) = (T £, ) =D el 0n)”.
k=1
Now we expand f as
F=Y {en)er+g
k=1
where ¢ is the orthogonal projection of f onto ker(7)). Then

(T f. f)= Z)\k fron)?
and hence

(Tr, [ ) = Z Nl frpn)? =

k=n+1

so that psd. follows from Lemma 3.24. In particular
= Megr(z)? = Kn(z,2) >0
k=1
so that
S Nepr(@)? < K ()
k=1

with the left hand side (absolutely) convergent for every x € X.
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(4) We deduce for 1 < N < M
M M 12, M 1/2
> welerlenml < (2 de?) ) (D0 Ao
k=N k=N k=N
<K(y,y)

M N\ 2 "
< (Z Aeor () ) (/P
k=N

This implies that for all z € X, Y 72, Apor(z)pr(y) converges absolutely
and uniformly in y and by symmetry for all y € X converges absolutely and
uniformly in x.

(5) Let now K,(y) := K(z,y), take any ONB {4y, }n>1 of ker(Tx) and
expand K, € L*(X) in the ONB {¢,, ¥ }n>1:

Ko =Y (Kau o) op+ Y (K, bp)tn

k=1 k=1
Arpr(z)

=0
so that Ky = > 17 Ak (x)pr. This means

n
Ky = lim > k() en
k=1

in L?(X). Thus, there exists a subsequence (n¢)g=1 8.t. > 1ty Moo () ok (y)
converges pointwise a.e. in y to K,(y). Now this implies that for all z € X
the continuous functions y — Y~ Ak (x)pr(y) and y — K (z,y) coincide
a.e. Since u(U) > 0 for nonempty open U C X we deduce that they coincide
everywhere (employing continuity). Hence

K(z,y) =Y Mpr(a)er(y)
k=1
for all x,y € X and in particular

K(z,2) =Y Arpr()?
k=1

for all z € X.
(6) Now we show that the convergence of Y 7_; Mewr(x)? to K(x,z) is
uniform. Fix € > 0 and let

n
Ve = {CL‘ €X: Z)\kcpk(x)Q > K(x,x) —5}.
k=1
Then V7 is open for all n > 1, V7 C V7, | and by pointwise convergence

Uvi=x.

n=1
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Since X is compact there exists a finite subcover and due to the inclusions

there must exist some n(e) > 1 s.t. Vrf(s) = X which shows that the conver-

gence is uniform.
(7) Going back to the inequality in (4):
M

M M 1/2 1/2
> welenlenml < (3 dan?) (30 M)
k=N k=N k=N

we deduce that Y 37, Ak (x)pr(y) converges absolutely and uniformly in
X x X with sum K(z,v). [ |
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Chapter 4. Baire Category and its consequences

This chapter is devoted to some of the major theorems in functional anal-
ysis. They are all consequences of a result in point-set topology, that is
the Baire category theorem. This theorem is a topological analogue of the
fact from measure theory that a set of positive measure cannot be countable
union of sets of measure zero.

4.1. BAIRE CATEOGRY

The idea of category of a set in a metric space is to describe ”"smallness”
resp. “generosity” in purely topological terms. Its origins lie in the thesis of
Baire who answered the following question: given a sequence f,: R — R of
continuous functions converging pointwise to a function f: R — R, that is

f#) = lim fu(z) VzeR

what can one say about the subset of points in R at which f is continuous?
We will see that this set is ”big” in a precise way. We now turn to the
relevant definitions: let X be a topological space and S C X a subset. We
recall that the interior S° of S'is the union of all open subsets of X contained
in S.

Definition 4.1. A subset S C X is nowhere dense if its closure S has empty

interior, that is (5)° = @.

Note that S is nowhere dense iff it is not dense in any open ball B<,.(z) C
X. Indeed, if (5)° = @ and S was dense in some B.(x) then its closure
would contain B.,(z), a contradiction. Conversely, if (S)° # & then S

contains some open ball B.,(z), so in particular S is dense in B<,(z).

Example 4.2. (a) A point in R? is nowhere dense (n > 1).
(b) The Cantor set in [0, 1] is (closed and) nowhere dense.
(c) Q C R is not nowhere dense since Q = R.
However:

(d) {(x,0): € Q} is nowhere dense in R

(e) Let f: R? — R be smooth and assume y € f(R?) is a regular value.
Then f~!(y) C RY is nowhere dense in R%.

Definition 4.3. (1) A set S C X is of first category in X if it is a
countable union of nowhere dense subsets of X; a subset S C X
that is not of the first category is of the second category.

(2) A subset S C X is generic if its complement is of the first category.

Example 4.4. Q, while being dense in R, is however of first category and
hence R\ Q, while being dense in R as well, is generic.

The main result of Baiare is that R is of second category in itself. This
actually holds for complete metric spaces as the following shows.
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Theorem 4.5. Let (X, d) be a complete metric space with X # &. Then
the following assertions hold:

(1) Let U, C X, n € N, be open and dense subsets. Then U := [, cn Un
is dense in X.

(2) Let I}, C X, n € N, be a family of closed subsets of X s.t. ({J,en Fn)°® #
. Then there is ng € N with F # &.

(3) Let X = |, e Fn with F), closed for all n € N. Then there exists
no € N with F3, # 2.

(4) If X = [J,,en An then there exists A, which is dense in some B.,(z) C
X.

We begin with

Lemma 4.6. For U C X and F = X \ U the following are equivalent:

(1) U is open and dense in X.
(2) F is closed and nowhere dense in X.

Proof. (1) = (2): If there existed V' C F open we would also have VNU #
@ due to density of U in X, which is a contradiction.

(2) = (1): Let z € X and U, be some neighbourhood of z. Then
U, NU # & since otherwise U, C X \ U which would contradict nowhere
density of X \ U. Thus U is dense in X. |

Now let us proof Theorem 4.5.

Proof. (1) Let V' C X be an arbitrary open set. Then by density of U
there exists some x1 € Uy NV and some 0 < r; < 1s.t. Bgyy (1) CUINV.
This follows from the fact that Uy NV is open so we can find an open ball
around x; contained in U; NV and in turn some smaller open ball stricly
contained in the former so that its closure will also be contained in U1 N'V.
We now iterate this, so in the next step with B, (z1) in the role of V' and
0<ry < %

By means of this we construct the sequence (z,,,7,) recursively! s.t. 0 <
T < % and

n
Bey, (zn) CUn N By, (2n-1) C (U NV

k=1
whereby we use that the finite intersection of open sets is open. From the
construction it becomes clear that (z,)n>1 is a Cauchy sequence since for
n,m > N we have d(z,,zn) < %, so by completeness of X it converges
to some z € X. Lastly, for any n > 1 we have that © € Bg,, (z,) since
(Tm)m>n is a convergent sequence contained in the closed set B, (zy),
letting us conclude = € U, for all n > 1, as desired.

INote that for justifying this construction we require the axiom of dependent choice.
One can in fact show that the axiom of dependent choice is equivalent to the Baire Cate-
gory Theorem.
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(1) = (3): If F;; = @ for all n € N then

g=x\{JF={x\F)

neN neN

which contradicts (1) since X \ F), is dense in X for all n € N using Lemma
4.6.

(1) = (4): This is a direction consequence of (3), which guarantees the
existence of some A, s.t. A, has non-empty interior. |

In order to prove (2) we need

Lemma 4.7. Let @ # Y C X be open in a complete metric space (X, d).
Then Y satisfies properties (1) and (3) in Theorem 4.5.

Proof. Y is again complete, being the closed subset of a complete metric
space. Now if U, is dense in Y it is also dense in Y so we can apply (1)
of Theorem 4.5 to deduce that [, ., Uy is dense in Y and thus also in Y.
(3) is implied by (1) (note that (3) does not require the metric space to be
complete but merely to satisfy (1)). [ |

Now let us proof (2) of Theorem 4.5.

Proof. Let F}, be closed in X and U := (UJ,,»; F»)° non empty. Then F,,NU
is closed in U and clearly U = |J,,»,(Fn N U). Hence by (3) of Lemma 4.7
there is a ng s.t. U N Fy, contains a non-empty subset W that is open in U
hence in X. Thus 0 # W C F,,, which implies F;; # <. |

We can rephrase a consequence of Theorem 4.5 as follows:

Corollary 4.8. A complete non-empty metric space is of second category,
as is any of its non-empty open subsets.

Corollary 4.9. Any generic subset of a non-empty complete metric space
is dense, as is any generic subset of an open subset of such a metric space.

Remark 4.10. There is little relation between being generic and bein of
positive Lebesgue measure, as the following examples shows:

(1) A(]0,1]) =1 but [0, 1] is not generic, say in R.
(2) Let N — Q, n — g, be a bijection and for every n > 1,

U'n, — U (Qk _ 2_(n+k+1)7(]k + 2—(n+k+1)).
keN

Then

A(Un) < Z 27(n+k) _ 27(n71).
k=0
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However, U, is open and dense in R, hence ﬂn>1 U, C R is generic
but

A(ﬂ Un) = lim ANU,) =0

n—00
n=>1

4.2. SOME APPLICATIONS

Next we present two applications of the Baire category theorem, the first
is due to Baire:

Theorem 4.11. Let f,: X — C be a sequence of continuous functions on
a complete metric space X such that

f@) = lim_ ful2)

exists for all x € X. Then the set of points where f is continuous is generic
in X. For a proof cf. [SS11] Chapter 4, section 1.1.

It is well know that in R there are continuous functinos that are nowhere
differentiable, e.g.

o0
f(z) = 22_”0‘6"2715’37 0<a<l1
n=0

and the question is: how common is this phenomenon? In fact, let C([0,1])
be the Banach space of continuous functions with sup norm || f||p = sup,¢o 17 [f(2)]-
Then:

Theorem 4.12. The set of functinos in C([0, 1]) that are nowhere differen-
tiable is generic.

Again, a proof can be found in [SS11]: Chapter 4, section 1.2.

In fact, while both theorems use the Baire Category Theorem, the proofs
are rather tricky.

We close this subsection with an application of Baire category which will
have far reaching far reaching consequences in Function Analysis.

Proposition 4.13 (Principle of uniform boundedness). Let (X, d) be a com-
plete metric space and fy: X — R, A € A a family of continuous functions
such that

sup |fa(z)] < +00 Ve X.
AEA

Then there is an open ball B.,.(y) (r > 0) s.t.

sup sup | fr(z)] < +o0.
AeAzEB

Proof. For every n € N consider the closed subset

Ap:={z e X:|fi(zx)|]<n VAeA}
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— Mz € X: |fa(@)] < n}.

A€A

Then by hypothesis X = J,,cn An and by (3) of Theorem 4.5 there exists
no € N with A7 # @. Now take y € A7 and r > 0 with B,.(y) C Ay,. B

4.3. THE UNIFORM BOUNDEDNESS PRINCIPLE

The combination of Proposition 4.13 with the linear structure of a vector
space has the following consequences:

Theorem 4.14 (Banach-Steinhaus). Let (V| - |[y) be a Banach space,
(W, ||l - [lw) a normed space and Ty € B(V,W), XA € A, a family of bounded
linear operators with

sup || T\ (v)|lw < 400 YveV.
AEA

Then supyep || Th|| < +oo.
Proof. Proposition 4.13 gives us an open ball B.,.(z) C V s.t.

sup sup ||Th(v)|[lw < C < 400
AeAveEBor(z)

so for allv € B<1(0) = 1B, (2)—% we can write v = Lu,—Z for u, € Bey(z)
to find

3@l = |- 7aw) — T 13(@)| < 2

Yv € B<1(0), VA € A
yielding supyep [|Th]] < +o0. [ ]

Our first application is to what one can say about a sequence T,,: V — W
of bounded operators converging pointwise.

Corollary 4.15. Let T,, € B(V,W) where V is a Banach space and assume
T(x) = lim T,(z)
n—oo
exists for for all x € V. Then

(1) sup,; | Tl| < 400
(2) T € B(V,W)
(3) 17 < liminf, o T

Remark 4.16. The theorem does not say that |1, — T|| — 0. Indeed,
consider

T,: *(N) — (?(N), == Zwkék = Ly O
k=1

Then ||Thz| = |zn| — 0 for all n € N so lim,_ Tz = 0. However,
|T|| =1 for all n € N.
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Proof. (1) Since (T,,)n>1 converges for all z, we have sup,,> || T,z| < 400
for all « so, by Theorem 4.14 ,sup,,»; |7y || < +o0.

(2)4(3) By linearity of the limit 7" is linear. Let [ := liminf, o |||
and (T}, )k>1 be a subsequence s.t. | = limy_, ||T},||. Now, for all x € V'
we have Tz = limy_,o Ty, () and hence

ell-

1Tzl = lim [|To,af < lim [T, |[[|2]
—00 k—o0
implying || 7| < I. [ |

Next we deduce two corollaries that are useful to detect bounded subsets
in Banach spaces.

Corollary 4.17. Let E be a normed space and B C E a subset such that
for all f € E*, f(B) C K is bounded. Then B C E is bounded.

Proof. We apply Theorem 4.14 with V = E*, W = K and A = B. Define
for all v € B,

T,: E* =K, [+ f(v).

Then sup,cp|Tvf| < +oo for all f € E*. Using Theorem 4.14 we deduce
that

sup ||T,|| < 400
vEB

and by Corollary 2.10 we have ||T}|| = ||v|| concluding the proof. [ |
We also have the analogous dual statement:

Corollary 4.18. Assume FE is a Banach space and B* C E* is a subset
such that {f(x): f € B*} C K is bounded for all z € E. Then B* C E* is
bounded.

Proof. Similarly to the previous proof we define for all f € B*
Tr: E—K, z+— f(z).

By assumption we have sup ¢ g« [|Ty(z)|| < +oo for all z € E, hence invoking
Theorem 4.14 (with V = E; W = K and A = B*) yet again yields

sup [|T¢|| < +oo.
feB*
Together with
sup || T[] = sup sup|f(z)| = sup ||f]|
feB* fEB* z€FE feB*

this concludes the proof. |
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4.4. THE OPEN MAPPING THEOREM AND THE CLOSED GRAPH THEOREM

A general question, once one has a category, is whether bijective mor-
phisms are automatically isomorphisms. In our case this translates to the
question whether a bounded linear operator between normed spaces that is
bijective has a bounded inverse. In general the answer to this question is
no. But if both spaces are Banach, the answer is yes will follow from the
more general theorem we present now.

Theorem 4.19 (open mapping theorem). Let X,Y be a Banach space and
T: X — Y a bounded operator. Then the following are equivalent:

(1) T is surjective.

(2) T is open.

(3) (Qualitative solvability) For every y € Y there exists a solution
u € X to the equation Tu = y.

(4) (Quantitative solvability) There exists a constant C' > 0 such that
for every y € Y there exists a solution v € X to the equation Tu = y
which obeys the bound ||ullx < Clly|ly-

Proof. It is clear that (1) and (3) are equivalent and that (4) implies (3).
We will first show that (2) and (4) are equivalent. If f is open there exists
e > 0s.t. B (0) C T(B<1(0)). Now, for arbitrary y € Y \ {0} we have

£ H4— € B..(0) so there exists z € B-1(0) with Tx = . Then, for

ey
Hyll 2 lylly

2[lylly
3

ﬁw\

L,

oy — (k) _ 2l
and [[u]l < Cllyly for C:= 2.

Conversely, given (4) holds for every y € T(B<1(0)) we want to find
some 0 > 0 s.t. Bs(y) C T(B<1(0)). Let uy, € B<1(0) s.t. Tuy = y. Any
w € B.s(y) can be written as y + a with a € B.5(0) and there exists some
Ug € B<1(0) s.t. ||ugl|x < Clla|ly < Cd. Now we have

T(uy +ue) =T(uy) + T(ug) =y+a=w

and [Juy + uq||x < ||uyl|x + C0, hence choose 6 > 0 s.t. [Juyl|x +Cd < 1
(note that ||u,||x < 1).

It remains to show the main direction, namely (3) = (4). The proof is
taken from [Taol0] (page 99-100). For every n > 1, let E, C Y be the set
of all y € Y for which there exists a solution to Tu = y with ||u||x < n|ly|y.
From the hypothesis of (3), we see that | J,», En =Y so by (4) of Theorem
4.5 there exists some ng s.t. Ey, is dense in some ball B, (yp). In other
words, the problem Tu = y is approximately quantitatively solvable in the
ball B<,(yo) in the sense that for every ¢ > 0 and every y € B.(yo)
there exists an approximate solution u € E,, with ||[Tu — y|ly < ¢ and
|lullx < nol|Tully, and thus ||u||x < nor + nee.
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By subtracting two such approximate solutions, we conclude that for any
y € Bcor(0) and £ > 0, there exists u € X with ||Tu — y|ly < 2¢ and
|lullx < 2nor + 2npe.

Since T is homogeneous, we can rescale and conclude that for any y € Y
and any € > 0 there exists v € X with |[Tu — y|ly < 2¢ and |Jul|x <
2no||lylly + 2noe.

In particular, setting ¢ = i”y”y (treating t he case y = 0 separately), we
conclude that for any y € Y we may write y = Tuj + y1, where |y1]ly <
sllylly and [lurllx < Snollylly-

Iterating this procedure (in the second step with y; in the role of y), we

find that in the nth step there exist uy, ..., u, with |Jugl|x < %noHyHy s.t.
n n
v=3Tut =73 w) +
k=1 k=1

with [lyn[ly < z=llylly-

Taking limits we see that Y~ | u, = u for some u € X since Y o> | |lun| x
converges and X is complete; w is a solution to Tu = y with |lu|lx <
5nolly|ly, so the claim follows. [ ]

Corollary 4.20. Let T: V — W be a bounded linear operator between
Banach spaces that is bijective. Then 77 ': W — V is bounded.

Proof. T~': W — V is well defined and by Theorem 4.19 T is open, hence
T~ is continuous. |

Corollary 4.21. Assume V is a vector space endowed with two norms
-l I ll2 st (V] - |lh) and (V|| - ||2) are Banach. Assume there exists
¢ > 0s.t. ||v]]2 < ¢|lv]|; for all v € V. Then there is C' > 0 s.t.

o[t < Cllv)la  YveV.

Proof. The identity map (V, ||-|[1) — (V, ||]|2), v — v is a bijective bounded
operator, hence the claim follows from (4) of Theorem 4.19. [

Next we turn to a rather astonishing consequence of consequence of Corol-
lary 4.20.

Theorem 4.22 (closed graph theorem). Let T: V' — W be a linear map
between Banach spaces V, W. Assume that

I:={(v,Tv):veV}
is closed in V' x W. Then T is bounded.

Remark 4.23. (1) The converse holds since W is Hausdorff.
(2) f: R — R defined by

Ly
=i Lo

has a closed graph, but is not continuous.
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Proof. V x W with the norm ||(v,w)|| = ||v||v + ||w|lw is a Banach space
and so is I', being the closed subspace of a Banach space. Observe that the
projections wy: V. x W — V and my: V x W — W are continuous and
linear. Now

mvlp: T =V
is a continuous linear bijection, hence by Corollary 4.20 its inverse
(rvlp) ™V =T
is continuous as well. Since T'= my o (7my|p) ™, it is continuous. |

Remark 4.24. Let C([0,1]) and C([0,1]) both be endowed with the sup
norm || - ||p. The derivative

cH([0,1) — c((o,1)), f f

is a linear map and its graph is closed in C*([0,1]) x C([0,1]) (this is a
formulation of the fact that if a sequence of functions (fy,)n>1 converges
uniformly to f and also (f},)n>1 converges uniformly to some g, then f' = g).
However, the derivative operator is not bounded. The closed graph theorem
was not applicable because C1([0, 1]) is not complete w.r.t. || - 5.

4.5. GROTHENDIECK’S THEOREM ON CLOSED SUBSPACES OF LP

Here we present a quite non-trivial application of the closed graph theo-
rem, namely

Theorem 4.25. Let (X, A, ) be a finite measure space, that is p(X) <
400. Suppose that

(1) E is a closed subspace of LP(X) for some 1 < p < +00

(2) E C L>®(X).

Then F is finite dimensional.

Proof. Equipped with the LP-norm, F is a Banach space. Let
I: E— L™(X)

be the identity map, I(f) = f for all f € E. We claim that the graph
of I is closed: indeed assume f, — f in LP and f, — ¢ in L*°. There
exists a subsequence (fy,)r>1 that converges a.e. to f and together with
the convergence in L we can conclude that f = g a.e. By the closed graph
theorem there is M > 0 s.t. ||fllgoo(x) < M||fllzr(x) for all f € E.

Claim. There exists A > 0 s.t. || f||zoo(x) < Al fllz2(x) for all f € E.

If 1 < p < 2 this follows from Hoélder’s inequality,

/X [fIPdp < </X |f!2du)g(/deu) - = HfH’iz(X)u(X)g%p

o 2
so in particular || f{|rrx) < [ fllz2omu(X) 2
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Assume 2 < p < 400 and notice that
-2
@ < A2 1 (@)

and integrating this inequality gives

110 x) < HfHIEoQ(X)HfH%?(X)-

We now use || f|lzx) < M| fllzr(x) for all f € E and deduce
- -2
11y < MP2U I 20 2

from which | fl| ox) < M7 ||f]|12(x) for all f € E follows.

Now we return to the proof of Theorem 5.25. Let fi,..., f, be an or-
thonormal set in E. If dim(E) > n such a set can be obtained by the
Gram-Schmidt orthogonalisation procedure. Let

n
B = {5:(31,...,8n) e C": Z|Sj|2 < 1}.
j=1

be the unit ball in C™ and for every s € B, let fs(x) = >_7_; s;fj(x). Then
[ fsll2(x) < 1 and by the claim we deduce || fs||L(x) < A for all s € B. So
for every s € B there exists a measurable subset Xy C X with u(X;) = u(X)
st. |fs(x)] < A for all z € X,. Let now {s;: j > 1} C B be a countable
dense subset of B and S := (1,5, Xs,;. Then [f;;(z)| < A for all z € S and
j € N, and p(S) = pu(X). But observe that for all x € S, s — fs(z) is
continuous, and hence |fs(z)| < A for all z € S and s € B. From this, we
claim that

(*) 1) < A2
j=1

for x € S. Indeed, we may assume that the left hand side is non-zero; then

if we let o := (3_7_; ]f](x)\Q)% and set s; := fj(z)/o, | fs(x)] < A implies
1 n
~> i@l <A
g “
J=1

as we claimed. Finally integrating () over X we find n < A2u(X). [

4.6. COMPLEMENTARY SUBSPACES AND A COUNTEREXAMPLE

First we show some geometric properties of closed subspaces in a Banach
space that follow from the open mapping theorem and then present and
elementary proof of the fact that ¢o(N) does not admit a closed complement
in £>°(N).

Proposition 4.26. Let V' be a Banach space and E, F' two closed subspaces
of V' s.t. E+ F is closed. Then there exists C' > 0 such that every z € E+ F

admits a decomposition z = e+ f for e € E, f € F with |e|]ly < C||z||y and
1fllv < Cllzlv.
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Proof. E x F with the norm ||(e, f)||lgxv = |lellv + || f||v is a Banach space,
as well is £+ F (with || - ||v), being a closed subspace of a Banach space.
The map

ExF—E+F, (e,f)—e+wv

is a surjective bounded linear operator. Hence, by (4) of Theorem 4.19, for
every z € '+ F there exists some (e, f) € E X F s.t.

lellv +11£llv = llte; Hllexr < Clle+ fllv = Cli=llv-
|

Let V be a Banach space and E C V a closed subspace. We say that F
admits a closed complement if there is a closed subspace F' C V s.t.
(1) E+F=V
(2) ENF ={0}.
We know that if V is a Hilbert space then E- is a closed complement of E.
A remarkable result of Lindenstrauss and Tzafriri says that if a Banach space
V' has the property that every closed subspace admits a closed complement
then there is an equivalent norm on V' coming from a scalar product.
Here We are going to limit ourselves to giving a concrete example. As
usual, let

N = {f: N = C: || fllpq) = sup |f ()] < +o0
neN
be the Banach space of bounded sequences and
co(N) = {f N — C: lim f(n) = 0}
n—oo
the closed subspace of those converging to 0. Our objective is to show:

Theorem 4.27. ¢y(N) does not admit a closed complement in ¢>°(N).

This elementary (but tricky) proof is due to R. Whitley [Whi66].

The strategy of the proof is the following: Assume R C ¢*°(N) is a closed
complement of ¢o(IN) in £°°(N). Then the canonical projection 7: £*°(N) —
(>°(N)/co(N) restricted to R, i.e. 7|p, is a bijective bounded operator of
Banach spaces, hence (7|) ™! is bounded bijective. We are going to establish
two properties which will lead to a contradcition:

(1) There is D C R* countable s.t. (;cpker f = {0}.

(2) D C (¢*°(N)/co(IN))* is any countable subset, () ;cp ker f # {0}.
If now T': ¢*°(N)/co(N) — R were any bounded bijective operator, and
D C R* countable with (),;.p ker f = {0}, then

{foT: feD}C(l*(N)/co(N))"
would be a countable subset with ();.p ker(f oT') = {0}, contradicting (2).

The proof of (2) is based on the following counter-intuitive set theoretic
fact:
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Lemma 4.28. Let S be an infinite countable set. Then there is a family
{Uqs: a € A} of subsets of S s.t.

(1) U, is infinite for all a € A.
(2) Uy NUy is finite for all a # b.
(3) A is uncountable.

Proof. We identify S with QN (0,1) and A := (0,1) \ Q. For every a € A
choose a sequence (p,)p>1 in S with limy, o 2, = a and set U, = {x,,: n >
1} € S. Then U, is infinite since a ¢ Q; ifa #b € S and z,, — a, y, — b
we have for N large enough that x, # y,, for all n,m > N so that U, N U,
is finite. Since A is uncountable this concludes the proof. |

We can now prove Theorem 4.27.

Proof. Let us show properties (1) and (2).
(1) For all n € N, define f,,: ¢**(N) — C, g — g(n). Then

[fn(9)] = lg(n)] < lgllco-
Futhermore, if g € [, ker f,, then g(n) = 0 for all n € N. Hence

D:={fulg:neN}CR"

is finite and (5, ker fn|p = {0}.
(2) Apply Lemma 4.28 to S = N and let {U,: a € A} be a family of
subsets of N as in the lemma. For all a € A define

fa = 1U(1, + Co(N) S KOO(N>/CO(N)
Now, for A € (¢*°(N)/co(N))* we claim that the set {a € A: \(f,) # 0}
is countable; it suffices to show that the set
1
= : = —
cm) = {aeca: D)l >}

is countable for every n € N. Choose fi,..., fi, € C(n) and let

b = sen(A(fi)) = &Ejﬁ:;

We will now proceed to show that f = ;" b fi has unit norm. Of course,

m
f = ZbklU% S EOO(N)
k=1
is a representative of the coset f. Letting F' := Uy, .;(Ua, MUy, ) we know that
Fis finite so f1p € co(N) and f—f1p represents f. Thus IfIl < Hf—]?lFHOO
and since

b, 2 €Uy \ F

(f = f1F)(z) = {0’ v & U, (Us, \ F)
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it follows that Hf— leHOO = 1so ||f]] < 1. From this we deduce

A1 A= S G >
k=1

which shows that C'(n) is finite. We have thus shown that {a € A: A(f,) #
0} is countable. If now D = {\,: n € N} C (¢*°(IN)/co(N))* is a countable
family then

Ufaed: a(fa) #0y c A

n=1

is countable as well and hence (1,5, ker A, # {0}. [
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Chapter 5. Topological vector spaces, weak topologies, and the
Banach-Alaoglu theorem

In Analysis one encounters function spaces with a natural topology that
however cannot be described by a single norm: for example the space of
continuous functions on R with the topology of uniform convergence on
compact sets. Another problem one encounters is the fact that the unit
ball in an infinite dimensional Banach space is never compact. To remedi-
ate these problems we are going to study topological vector spaces whose
topology is given by a family of seminorms. On one hand this allows us to
study natural function spaces with tools of functional analysis; on the other
hand this will lead to weaker topologies on Banach spaces, thereby restoring
compactness in certain situations.

5.1. BASIC DEFINITIONS AND EXAMPLES

We begin by recalling Definition 1.4:

Definition 5.1. A topological vector space is a K-vector space V' endowed
with a topology such that the maps

(1) KxV =V, (A\v) — v
(2) VxV =V (v,w)—v+w

are continuous.
We draw the following useful conclusion:
Lemma 5.2. The two maps

My:V =V, v— v
Ly: VoV w—ov4+w

are homeomorphisms.

Proof. M) is continuous with continuous left and right inverse My-1; L, is
continuous with continuous left and right inverse L_,. |

We now turn to describe the topology on a K-vector space V' generated
by a family of seminorms (see Definition 2.6).
Let V be a K-vector space and {|| - [|o: @ € A} a family of seminorms

| flaz V=0, +00)

on V. There is a priori no restriction on the cardinality of A. For all v € V,
F C A finite and r > 0 we let

Nw; Fir):={w e V: |[w—v|o <rforall a € F}.

Definition 5.3. Define U C V to be open if for all u € U there exists a
finite F C Aand r > 0s.t. N(v; F;r) C U.
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Clearly, @ and V are open w.r.t. to this definition, as well is the arbitrary
union of open sets. For finite intersections, note that
N(v; Fi;7m1) N N(v; Fa;rg) = N(v; Fy U Fo;min{ry, ra})
is open. From this we conclude that finite intersections of open sets are
open.

Definition 5.4. The topology on V generated by the family of seminorms
{||  |lo: @ € A} is the topology whose open subsets are given by Definition
5.3

Lemma 5.5. The topology on V' generated by the family of seminorms
{||  lla: & € A} endows V with the structure of a topological vector space.

Proof. This follows from
AN (v; F;1r) = N(dw; F | A|r)
and
N(vy; Fy;7r1) + N(vg; Fos;re) C N(vy + vg; Fy N Fa;ry + 19)
with a similar argument as given in Lemma 1.3. |

Of course, if A = @ then the topology on V has exactly two open sets,
namely @ and V. The following property keeps degenerate cases away:

Definition 5.6. A family A of seminorms is sufficient if for all v € V'\ {0}
there exists some o € A s.t. ||[v]|o # 0.

Lemma 5.7. If A is sufficient then the topology generated by A is Hausdorft.

Proof. Indeed, if v; # vy € V then by sufficiency d := ||v; — v2]|o 7# 0 for
some o € A. Then N(vq;q; %) and N (ve; a; %) are two disjoint neighbour-
hoods of v; and vy resp. [ |

A particularly important case is when we have a countable sufficient fam-
ily of seminorms.

Proposition 5.8. If {|| - ||,: » € N} is a sufficient countable family of
seminorms on V', the generated topology is metrisable.

Proof. Since the family is sufficient, it is straightforward to verify that

=17 v=wla
d(v,w) =) ﬁ(W)

n=1

define a distance on V. Then observe that for all n,¢ > 1:
¢
L v—wln ) L flv—wl 1
R e A B S (Ll S L
2”(1+|]v—an (v, w) ;2’“ 1+ ||v—wl 2t

From the second inequality we deduce that if 27 < ¢, then
NIl -l -1 s e}) € Beae(v)
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(here B.,(v) refers to an open ball w.r.t. the metric d). Moreover, for £ > 1
and d(v,w) < garr the first inequality implies

i( [v—wlln ) €
27 \1 + |lv —wlp PAGE
80 (2 —¢)||lv —w||n < € and hence ||v —w||, < . Thus, for all € > 1 we have
Bcg-min (0) TN (5 [ - [[ns€)
[ |

Example 5.9. Let X be a locally compact Hausdorff space. For every
compact subset K C X, define for all f € C(X)

[l := sup | f(z)].
zeK

Then {|| - ||k: K C X, compact} is a sufficient family of seminorms. We
have that f, — f in this topology iff f,, converges to f uniformly on ev-
ery compact subset. Observe that if X is a metric space s.t. Bgn(xg) is
compact for all n > 0, then setting K, := B<y(z0), the countable family
{Il - &, }n>0 of seminorms induces the same topology on C(X), which is
therefore metrisable.

Example 5.10. Let (X, F,u) be a triple consisting of a locally compact
Hausdorff space X, p a positive Borel regular measure on X and F the
o-algebra of u-measurable sets. Define

LP (X):={f: X — C measurable: VK C X compact, flx € L(X)}.

loc

Then | fllzr(x),x = I f1kllzr(x), for K C X compact, defines a sufficient
family of seminorms. Observe that if X is a countable union of compact
sets, the topology on LY (X) is metrisable.

loc

There are many more examples of space of functions on R™ where the
seminorms take into account some local boundedness or local integrability
on derivatives.

Let V, W be topological vector spaces defined by families of seminorms

{185 aeay, {15 6eB}

respectively. Analogous to Theorem 1.18 we have a characterisation of con-
tinuous linear maps 7: V. — W.

Proposition 5.11. For a linear maps T: V' — W the following are equiva-
lent:

(1) T is continuous
(2) T is continuous at 0
(3) For all finite F' C B there exists some finite G C A s.t. for all § € F:

w |4
sup{ | 7(@) [} + maxs [l < 1} < +o0
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Proof. To see why (2) implies (1) we can apply the same argument as in
the proof of Theorem 1.18 which is valid for all topological vector spaces.

(2) = (3) Let FF C B be finite. Since N(0; F;1) is an open neigh-
bourhood of T'(0) we can find some finite set G C A and ¢ > 0 s.t.
T(N(0;G;¢e)) € N(0; F; 1) so that

T(N(0; G: 1)) = TGN(O; G:e))
= T(N(0;G:))

1
C EN(O;F;l):N(O;F;l/s).

Taking closures the statement follows.
(3) = (2) Let N(0; F;r) with ' C B finite and r > 0 be arbitrary.
Moreover, let G C A be s.t.

C = sup{||T(x)||gV; max [l < 1} < 400

ie. T(N(0;G;1)) € N(0; F;C). Then T(N(0;G;r/C)) C N(0;F;r) as
desired. |

Corollary 5.12. A linear form f: V — K is continuous iff there exists
G C A finite such that:

sup{ |/ (@)]: max 2] < 1} < oo
aclG

Proof. This follows immediately from the previous proposition applied to
W = K and the topology on K generated by the seminorm (actually a
norm) | - | which coincides with the topology induced by the norm |-|. W

Given a topological vector space V' (abbreviated TVS from now on), we
denote by V* the vector space of all continuous linear forms V' — K. We
then have:

Theorem 5.13 (Hahn-Banach). Let V be a TVS given by a sufficient family
{]l  lo: @ € A} of seminorms. Then for all v € V' \ {0} there exists some
F € V* with F(v) # 0.

Proof. Let v € V' \ {0} and o € A with ||v||o # 0. We apply Theorem 2.7
to the seminorm || - ||o, the subspace M = Kuv and the linear form
fiKv =K, f(Av) = Av[|a

to obtain a linear extension F': V' — K satisfying |F(w)| < ||w]|4 for all w €
V. By Corollary 5.12, F' € V* and by construction F'(v) = f(v) = ||v|lo. W

5.2. WEAK TOPOLOGIES

When (V,| - ||v) is a normed space and (V*, || - ||y+) its dual we will use
the tools from Section 5.1 and use suitable families of seminorms to define
new TVS structures on V and V* that have "fewer” open sets than the



57

corresponding norm topologies. In fact, we will apply this construction to
any TVS V and its dual V*, and characterise the resulting topologies as
initial topologies.

Definition 5.14. Let V be a TVS.

(1) The o(V,V*)-topology on V is the topology defined by the family of
seminorms {|| - ||x: A € V*} where ||v]|y := |A(v)| for all v € V. Tt is
often referred to as the weak topology on V.

(2) The o(V*,V)-topology on V* is the topology defined by the family
of seminorms {|| - ||,: v € V'} where ||f||, := |f(v)| for all v € V*. It
is often referred to as the weak*topology on V*.

Lemma 5.15. (1) The family of seminorms defining the o(V*, V') topol-
ogy on V* is sufficient.

(2) If V is a TVS defined by a sufficient family of seminorms then the

family of seminorms defining the o(V, V*) topology on V is sufficient.

Thus, the weak® topology on V* is always Hausdorff, and if V' has a
sufficient family of seminorms. the weak topology on V is Hausdorff.

Proof. (1) If f € V*\ {0} then there is some v € V with f(v) # 0, hence
11l #0.

(2) This follows from Theorem 5.13 which guarantees the existence of
some f € V* with f(v) # 0.

Lastly, according to Lemma 5.7, topologies induced by a sufficient family
of seminorms are Hausdorff. |

We now turn to a very useful way of characterising weak and weak™ toplo-
gies by putting them into the larger framework of initial topology , a concept
of wide ranging applications.

Let X be a set and F = {(¢;,Y;): j € J} a set of pairs (¢;,Y;) where Y}
is a topological space and ¢;: X — Y; a map. The task is now to find the
most “economical” topology on X making all these maps continuous. Of
course the discrete topology on X would do the job, but we want the one
with the ”least number” of open subsets. Let then 7 C 2% be a topology
for which the above maps are continuous. Then for all j € J, if U; C Yj is
open, we must have goj_l(Uj) € T. Let then

S1 = {¢;'(Uj): U; CY; open, j € J}.

This is not necessarily a topology as it does not necessarily contain all the
finite intersections or arbitrary unions of members of S7. Let S be the set
containing all finite intersections of elements in 77 and let 7r be the set of
arbitrary unions of elements in Uy. Then 7r C T and

Lemma 5.16. 7r is a topology.
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Proof. It is clear that @ and X are in 7 and that it is stable under
arbitrary unions. For finite intersections, let Uy, Uy € TF and write

Ur=|J Ve, Ua=JWs
acA BeB

where V,, and Wy are in S3. Then, by definition of S3, we can write

Na ng
Va={¢;"Via) Ws={)er" Wip)
j=1 k=1

for subsets Vo and W}, g open in Y; respectively Y. Now

UmUQ:(U Va>m<U Wﬁ): U (vanwy)
acA BeB

acA

BeB
and since V;, and Wy are in S, so is their intersection. By definition of 7z,
the arbitrary union of sets in Sy is in Tz, concluding the proof. |

Definition 5.17. 7Tr is called the initial topology defined by the family
F={(v;;Y;): 5 €J}.

Example 5.18. Let {Y}};cs be a family of topological spaces, X = HjeJ Y;
the (set theoretic) cartesian product and 7;: X — Y the projection onto

the jth coordinate. Then the product topology on X is the initial topology
w.r.t. the family {(7;,Y})};cs.

Now, let T be the initial topology on X given by a family F = {(¢;,Y})} ecs-
The following two lemmas are quite useful:

Lemma 5.19. Let Z be a topological space. A map ¥: Z — X is continuous
iff for all j € J the map ¢; 0v: Z — Y} is continuous.

Proof. If 9 is continuous then so is ¢; o v, being the composition of con-
tinuous functions. Conversely, if ¢; o 1) is continuous for all j € J we know
that

(0 0) "1 (U;) = ¢~ (e, 1 (Uy))

is open for all open sets U; C Y;. Since the go;l(Uj) are somewhat the
atoms of Tr, we can use the definition of 7r together with the fact that
@ 12X — 27 commutes with unions and intersections to conclude that
¥~ 1(U) is open for arbitrary open sets U € Tr. [ ]

Lemma 5.20. A net (z4)qca in X converges to z € X iff (¢j(za))aca
converges to ¢;(z) for all j € J.

Proof. The necessary direction follows from the fact that ¢; is continuous
for all j € J. For the converse, suppose that for a given net (z4)aca there
exists some z € X s.t. @j(zq) — @j(z) for all j € J. Let U C X be
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some arbitrary open neighbourhood of z. By definition of Tr there exist
Wi, ..., Wy, with Wy C Y}, s.t.

m
x € ﬂ @,Zl(Wk) cU.

k=1
For every 1 < k < m we find a corresponding S s.t. pr(z,) € Wy for all
a = PBg. Since A is a directed set, every two elements have an upper bound
so inductively every finite subset has an upper bound. Hence we set 8 to
be some upper bound of {31,..., S} so that for all « > [ we have for all
1 < k < m that ¢g(z,) € Wy, in particular z, € ¢ ' (W). We conclude
that x4 € 1oy ¢y, (Wi) C U for a > 8. [ |

Now let us return to a vector space V over K and a family of seminorms {||-
llotaca- Let T be the topology on V' generated by this family of seminorms
and T the initial topology on V associated to F = {(z — ||z — 0|0, K): v €
V, a € A}

Proposition 5.21. 7 = Tr.

Proof. By construction of 7, all seminorms || - ||: V — K are continuous.
Moreover, since (V,7) is a TVS we also know that addition of vectors is
continuous, so in particular z — ||z — v||, is continuous for all v € V' and
all « € A. Hence T D TF.

For the other inclusion, let v € V, « € A and r > 0. Then
Niasr)={z e V: |z —v]a <1} =[r = [lz = v]o] " ((~r7))
so N(v;a;r) is open with respect to Tx, concluding the proof. [ |

Corollary 5.22. Let V' be a TVS generated by a family of seminorms and
V* its dual.
(1) The o(V,V*) topology on V is the initial topology for the family
F= {(/\7 K)})\GV*'
(2) The o(V*, V) topology is the initial topology for the family {(J(v), K)}vev
where J(v): V* — V) A — A(v).
Proof. (1) We already know that every f € V* is continuous w.r.t. o(V, V™).
For the converse, using the previous proposition we know that o(V,V*) is
equal to the topology generated by

{(z |z —v|[,K):veV, A€V} ={(z+— [Az) = Av),K): v €V, A€ V*}.

Now for all v € V and all A € V* the function V — R, z — |A(z) — A(v)| is
continuous w.r.t. the initial topology generated by {(\, K)} cy+, being the
composition of continuous functions. This shows the other inclusion.

(2) Analogous argument. [ |

We deduce from Lemma 5.19 and 5.20 in combination with Corollary 5.22:

Corollary 5.23. (1) A map ¢: Z — V is continuous for the o(V, V™)
topology iff fo1: Z — K is continuous for all f € V*.
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(2) A map ¢: Z — V* is continuous for the o(V*, V') topology iff z —
¥ (z)(v) is continuous for all v € V.

(3) A sequence (x,)n>1 converges in o(V,V*) to z iff f(z,) — f(z) for
all f e V™.

(4) A sequence (fr)n>1 converges in o(V*, V) to f iff f,(v) — f(v) for
allv e V.

5.3. NORMED SPACES AND THE BANACH ALAOGLU THEOREM

Let us now turn to a normed space (V,|| - ||v) and recall that its dual
(V*, || - |lv+) is a Banach space (cf. Proposition 1.22). We will often refer to
the norm topologies as strong topologies, to the o(V,V*) topology on V as
the weak topology and the o(V*, V) topology on V* as the weak™ topology.

(1) and (2) of Corollary 5.23 have the following consequences:

Proposition 5.24. Let T: V — W be a bounded linear operator of normed
spaces (V)| - |lv), (W, - lw) and T*: W* — V* its adjoint.

(1) T is continuous for the weak topologies on V' and W.

(2) T* is continuous for the weak™ topologies on W* and V*.

As a consequence of the closed graph theorem we have the following con-
verse to (1) of Proposition 5.24:

Proposition 5.24*. Let T: V — W be a linear map between Banach
spaces V and W. Assume T is continuous for the weak topologies on V' and
W. Then T is bounded.

Proof. Since graph(7') is weakly closed, it is strongly closed, hence the
conclusion follows from the closed graph theorem (cf. Theorem 4.22). W

Now let (V.|| -||v) be a normed space and (V*, || -|y+) its dual. Of course
every weakly open set is strongly open and the same applies to V* with its
weak™ topology. Now if F' C V* is finite and € > 0 then

NO;F;r)y={weV:|f(w)| <cforall feF}
contains the subspace feF ker(f) which is of finite codimension in V. Thus,
if V' is infinite dimensional, the strong open ball B..(0) is not weakly open

and the same observation applies to V*.
We have, however, the following:

Proposition 5.25. (1) B.,.(0;V) is weakly closed.
(2) Bg,.(0;V*) is weakly” closed.

Proof. (1) Recall that for all v € V' Corollary 2.10 tells us
[ollv = sup{|f(v)]: [lf]| <1}
and hence [jv|y <7 iff [f(v)] <7 for all f € B.(0;V). Thus,

B, (0:;V)= ] A{veV:|f)|<r}
FEB_, (V%)
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and hence is weakly closed.
(2) Analogous argument. [ |

Example 5.26. Let H be a separable infinite dimensional Hilbert space and
{en}n>1 an orthonormal basis. Then lim,,_, €, = 0 is the weak topology.

Indeed, recall that every f € H* is given by f(v) = (v,w) for some
w € H (Riesz Representation Theorem). We apply the convergence criterion
of (3) of Proposition 5.23: Let z = >.°° @6, with Y00 [2,]? < +oo.
Then (e,,x) = z, and hence lim,_,(e,,z) = 0. Thus, we see that while
B1(0;H) is weakly closed, the unit sphere

S'={veH: ||lvln=1}
is not.

Example 5.27 (Compare with 2.16). Let X be a compact Hausdorff space
and C'(X,R) the Banach space of continuous functions f: X — R with the

norm || flp := sup,ex | f(2)].
Let M(X,R) be the space of signed regular Borel measures on X. Then

the R-version of the Riesz representation theorem gives a bijection
R: M(X,R) - C(X,R)", pu— 9o,

where
@Afyzjgfdu

and [|[®,] = |u|(X); here |p| is the total variation measure of . Thus R
is a bijective isometry between the Banach space (M (X,R), | - ||) (whereby
||| := |u|(X)) and the Banach space C(X, K)*, the dual of C(X,R). The
weak™ topology on C'(X, R)* gives via R a topology on M (X, R) which coin-
cides with the initial topology associated to F = {(J(f),R): f € C(X,R)},
whereby

1) = [ fan
X
The unit ball in M (X, R) is then given by
Mg, = {u e M(X,R): ‘/ fdu‘ < 1forall f e C(X,R) with [[f]lp < 1}.
X

In it there is a particularly interesting subset, namely the space of probability
measures on X,

MY(X) := {pu: pis a positive regular Borel measure on X, u(X) = 1}
= {u e M(X,R): / fdu >0 whenever f > 0 and / ldu = 1}.
X X

It is thus a convex weakly™ closed subset of the unit ball M¢;.
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Example 5.28. Let X = [0, 1], A the Lebesgue measure such that A([0, 1]) =
1 and g the Dirac measure at 0. Then 6y € M*(X) and p, := nAlp,1/n) €
MY(X) for all n > 1. For every f € C([0,1],R) we have

1/n
/ fdpin = n
X 0

1/n
A n(f(x) — £(0)) dA(z)

ﬂ@M@Hﬂmzéﬁ%

since

1/n
<¢A sup [ (y) — £(0)] dA(x)

y€[0,1/n]

= sup |f(y) = f(O))—0

z€[0,1/n]

by continuity of f. Thus, p, — dy weakly*.
Now we turn to the central result of this chapter:

Theorem 5.29 (Banach-Alaoglu). Let V' be a normed space. Then the
unit ball B_;(0; V*) in V* is weakly* compact.

Proof. For the ease of notation, let us write B* := B<;(0; V*) and B :=
B<1(0; V). Note that for any A € B* we have A\(B) C {z € K: |2| < 1} =: D
so one can identify' B* with a subset of D =[] .5 D which is the space
of functions from B to D (we will also write B* for this identification).
Note that by Corollary 5.22 we know that the weak™ topology on B* is
the initial topology w.r.t. the family {([A — A(v)],K)}vep which we can
also write as {(my| g« , D) }vep; here m,: DB — D is the projection onto the
"vth coordinate”. But note that the product topology on D? is the initial
topology w.r.t. the family {(m,, D)},en, so we find that the weak* topology
on B* is just the product topology on D® restricted to B*.

Due to Tychonoff’s Theorem we know that D? is compact w.r.t. the
product topology, so all that remains is to show that B* is closed in DB,
Let (Aa)aca C B* be a net converging to f € DB; we have to show that f
is linear and thus again an element of B*. For arbitrary v,w € B we have
Aa(V+w) = Aa(v) + Ao (w) so by continuity of addition in K we get that
Aa(v) + Aa(w) converges to f(v) + f(w), as desired. Same applies to A, (cv)
for some scalar ¢ € K.

Remark 5.30. Even if V' is a Banach space, the closed unit ball B<;(0; V) is
not necessarily compact in the weak topology. In fact a theorem of Kakutani
asserts that B<(0; V') is weakly compact iff V' is reflexive, that is iff the linear
isometry J: V — V** from Proposition 2.12 is surjective.

IThis can be achieved by considering the canonical injection
U: B*— D%, A= (Av))ven

which can be turned into a homeomorphism (w.r.t. the weak™ topology) via U: B* —
U(B*), A T(N).
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One of the important consequences of Banach-Alaoglu in the context of
Example 5.27 is the following:

Corollary 5.31. Let X be a compact Hausdorff space. Then the space
M*'(X) of probability measures on X is weakly* compact.

Proof. Is it a weakly™ closed subset of the unit ball M. |

Remark 5.32. An equivalent formulation is: the space M!(X) equipped
with the initial topology associated to the family F = {(f,R): f € C(X —
R)} is compact.

We end this chapter with a construction that will bear its fruits in the
next chapter.

Let X be a compact Hausdorff space and ¥: X — X a homeomorphism.
Then 1) gives rise to a linear map:

A): C(X) — C(X), fb—>fo¢_1.

Then the following two properties are immediate:

(1) [A@))llo = 11y for all f e C(X)
(2) A(hr 0 tha) = A(th1) © Altha).
In particular A(z)) is a bijective isometry of C'(X) with inverse A(¢p~1).
Moreover, its adjoint A(¢)*: C(X)* — C(X)* is a bijective isometry (ex-
ercise 9 and (2) of Proposition 5.24 imply that A(¢)* is weakly™ continuous).
Now by (2) and properties of adjunction we have:

A(th1 0 1h2)™ = (A(P1)A(1h2))" = A(92) " A(¢h1)"

which leads us to define:

This way we recover:

N (1 0 1h2) = A (Y1) A" (¢2).

Now, coming back to Example 5.27, let us compute \*(¢)) under the
identification:

M(X)—=C(X)", pn— 2,
We have \*(¢)(®,,) = ®, and proceed to compute v. One has
N (@)(@)(f) = AW)) " (@,)(f)
A=)
= ¢, (A7)

= @,(fov) = [ fouvla)duta)
and ®,(f) = [y f(y) du(y).
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Thus we have that for all f € C(X

/ f ) du(y /ﬁfow ) dpu(z).

Now let for every Borel set £ C X,
V' (E) = (¢~ (E)).

Then v/ is a signed regular Borel measure denoted 1, and called the push-
forward of the measure p by 1. Clearly,

V(B) = [ Lo due) = [ 150 v(a)duta)

which by using step functions and the monotone convergence theorem im-
plies (cf. Theorem 8.3)

| 1w = [ fw)du)

for all f € C(X). Hence v/ = v, i.e.
A () (@) = Py, (-
Finally we observe from this that for all homeomorphisms ¥: X — X,
X' ()(M'(X)) = M'(X).
An interesting point is, that this construction can be generalised in the

following way: let ¢»: X — Y be a continuous map of compact Hausdorff
spaces and p € M(X). Then, for Borel sets E C Y,

() (E) = u(y™(E))
defines an element ¢y € M(Y') and
(1) M(X) — M(Y), p— tuis weakly™ continuous.
(2) Pu(M'(X)) € M'(Y).
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Chapter 6. Convexity; the Kakutani-Markov Fixed Point
Theorem, and Krain-Milman

This chapter has three interrelated Thema. First, we will exploit the
analytic form of Hahn-Banach to establish separation properties of convex
sets in TVS whose topology in generated by a family of seminorms. Then
we establish a general fixed point theorem (Kakutani-Markov) that has far
reaching consequences; for instance, it implies that any homeomorphism of
a compact Hausdorff space has an invariant probability measure. Finally,
we establish a very geometric result on compact convex subsets of a TVS
generated by a sufficient family of seminorms that says one can recover it
from its subset of extreme points. Applied to a homeomorphism of a compact
Hausdorff space it implies the existence of an ergodic invariant probability
measure. Unless otherwise specified, all vector spaces in this chapter are
over R.

6.1. CONVEXITY
Let V' be an R-vector space.

Definition 6.1. A subset K C V is convex if for all v,w € K the vector
(1 —t)v + tw is again in K for all ¢ € [0, 1].

Example 6.2. Let p: V — R be a gauge. Recall that this means
(1) p(Av) = Ap(v) for all A >0 and all v € V.
(2) p(vr +v2) < p(vr) + p(v2) for all vi,v € V.
Then for all r € R,
P, :={veV:p) <r}
is convex. Indeed, for vy,vy € P, and t € (0,1) we have
p((1 —t)vr + tvg) < p((1 = t)vr) + p(tvs)
= tp(v1) + (1 — t)p(v2)
<tr+(1—-t)r=r.

This clearly extends to ¢t = 1 and ¢t = 0. The same argument shows that if
one replaces < in the definition of P., by < the corresponding subset is as
well convex.

This process can be reversed for convex subsets with additional properties.

Definition 6.3. A subset A C V is absorbent if for all v € V there exists
a > 0s.t. for all [A\| > a we have v € \A.

Example 6.4. B<1(0) C R? is absorbent.

Example 6.5. Let V be a TVS and U an open subset containing 0. Then
U is absorbent. Indeed, for arbitrary v € V the map R — V, t — tv is
continuous, in particular at ¢t = 0. Hence there exists € > 0 s.t. tv € U for
all [t] <e. Thus v € AU for all |A| > 1/e.
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The relationship between convex subsets and gauges is given by the fol-
lowing proposition.
Proposition 6.6. Let V' be an R-vector space and A C V s.t.

(1) A convex

(2)0e€ A

(3) A is absorbent.
Then

pa(v) :=inf{a>0: v € aA}

is a gauge on V. In addition:

(1) {z: pa(zx) <1} C AC {x: pa(z) <1}
(2) If A C B and B satisfies (1), (2) and (3) then pp < pa.

Proof. Since A is absorbent, p4 is well defined. First, for A > 0 we have
pa(Av) = inf{a > 0: \v € A}
= inf{a >0:v€ %A}
= inf{ o > 0: v € 0 A}

= Ainf{a > 0: v € @A} = Apa(v).

For subadditivity, let v,w € V. For any o, > 0 s.t. v € aA and w € SA
we have

v + v o 2 s v €A

a+p a4+ a+fa a+pp

employing convexity. Hence v+w € (a+ ) A, demonstrating subadditivity.

For (1), it is clear that {z: pa(z) < 1} C A due to convexity, since if

x € aA for @ < 1 we also have x € A. Similarly, x € A immediately implies
pa(z) < 1, showing the other inclusion. Property (2) is clear.

Example 6.7. Let V be a TVS defined by a family {||-|la }aca of seminorms,
and U = N(0, F,e) where ¢ > 0 and F' C A is finite. Let us compute py:
we have for v € V and A > 0,

vEAN < v e AN(0; Fie)

<e€

«

v
= max”—
acF I\

<= max ||v]|a < A&
acl

and hence pa(v) = L maxaep |V]a-
With these tools at hand we can now prove:

Theorem 6.8. Let V be a TVS (over R) defined by a family of seminorms
{ll-/la}aca- Let A C V be a nonempty open convex subset and v ¢ A. Then
there exists F' € V* with F(a) < F(v) for all a € A.
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Proof. Pick ag € A; then A’ := A — ag is open, convex and 0 € A’. Let
par: V. — R be the associated gauge as in Proposition 6.6. Define M :=
R(v — ag) and

f+M—->R, Av—ay)— A\

Since v — a9 ¢ A’ we have by Proposition 6.6 that pa(v — ag) > 1. By
homogeneity of p4 and linearity of f this implies f(w) < pa/(w) for all
w € M. By Theorem 2.4 there exists a linear extension F': V — R of f
with F(w) < pa(w) for all w e V.

Let us observe that since A’ is open we have A’ = {w € V: pa(w) <
1}. Indeed, the D inclusion follows from Proposition 6.6. For the reverse
inclusion let w € A’. Since R — V, t — tw is continuous and A’ open, there
exists an open neighbourhood U C A’ of w and e > 0s.t. (1 —¢,1+¢e)w C
U C A’ and hence (1 +¢/2)w e A'.

Thus F(a—ap) < par(a—ap) < 1foralla € Aand F(v—ag) = f(v—ag) =
1. |

With this at hand we can now show that one can separate points from
closed convex subsets.

Corollary 6.9. Let V be as in Theorem 6.8, A C V closed convex and
x ¢ A. Then thereisa € Rand F € V*s.t. F(a) < a < F(x) for all a € A.

Proof. Since A is closed and z ¢ A we can find an open neighbourhood U of
0 with (z+U)NA = @. Let J be finite and € > 0 s.t. N := N(0;J;¢) CU.
Since N = —N we conclude from (x — N)N A = @ that xt ¢ A+ N. Now
observe that

A+N=|]J@+N)
acA
which is therefore open; it is also convex. By Theorem 6.8 there is F' € V*
s.t. for all a € A and w € N we have F(a + u) < F(x). Since F' # 0,
there exists vg € V' with F(vp) # 0 and since N is absorbent there is A # 0
with ug := Ay € N. Thus, F(up) # 0 and exchanging ug with —ug if
necessary, we may assume F(ug) > 0. Hence F'(a) + F(up) < F(z) so with
a:= F(z) — F(ug) we get F(a) < a < F(z) for all a € A. [ ]

The simple example of A = B.1(0; R?) and x € R? with ||z|| = 1 shows
that the condition that A is closed in the previous corollary, is important.

It is now time to turn to the concept of convex hull of a subset A C V in
an R-vector space.

Definition 6.10. The convex hull conv(A) of a subset A C E is the inter-
section of all convex subsets containing A.

Example 6.11. A triangle.

One shows by recurrence that if vq,..., v, belong to a convex set C then
y g
Y p—q1 Ak € C whenever Aj, ..., A\, € Ryg with Y ) 4 A\ = 1.
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This leads to the following formula for the convex hull of a subset A C V:
Let

R>0 :={A: S — R>g: A has finite support}.
Then

conv(A {Z)\ a)a: )\ER>O,Z)\ }

acA a€A

Indeed, that conv(A) contains the right hand side follows from the above
remark while the reversed inclusion follows from the fact that the right hand

)

side is convex, as the following computation shows: For all \,~ € R( >0 and
t € [0,1] we have

tY Ma)a+ (1—1)) y(a)a= > (tA(a) + (1 — t)y(a))a

acA acA acA
and
D (tA @)+ (1 —t)y(a) =t+ (1 —t) = 1.
acA
The following generalises Proposition 5.25.

Proposition 6.12. Let (V|| - ||y) be a normed vector space and C C V
convex. Then C' is strongly closed iff it is weakly closed.

Proof. If C is weakly open it is strongly open, hence weakly closed implies
strongly closed.

For the converse, assume that C' C V' is strongly closed; let us show that
V' \ C is weakly open. Let xy ¢ C; by Corollary 6.9 there is « € R and
F € V* with

F(c) < a < F(xo)
for all ¢ € C. Thus {v € V: F(v) > a} is weakly open, contains = and is
disjoint from C. |

To proceed further we consider the following lemma.

Lemma 6.13. Let V be a TVS. Then the closure C of a convex subset
C C FE is convex.

Proof. For ¢ € [0, 1] we have
1-t)C+tC=(1-t)C+tCcC((1-t)C+tC)cC

using convexity of C'. We have used that for X, Y C Vandt € K, V a TVS
over K, one has tX = tX and X +Y C X + Y which follows immediately
from continuity of multiplication by a scalar and vector addition.

For example, if x € X and y € Y are limit points of X respectively Y,
there exist nets (za)aca C X and (yg)gep C Y converging to x resp. y.
By continuity of addition we have that x, + yg converges to = + y since the
sequence ((Ta,Ys))(a,3)caxB converges to (z,y) (here A x B is endowed with
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(o, 8) < (o, 8') <= a <o AB < which naturally makes it a directed
set). [ |

From the preceding lemma we deduce the following proposition.

Proposition 6.14. Let (V.|| - |lyv) be a normed vector space and C' C V a
convex subset. Then its closure C' for the strong topology coincides with its
closure C' for the weak topology.

Proof. Since C" is weakly closed it is also strongly closed and since C* > C
this implies C* > C. Conversely, by Lemma 6.13, C is convex, meaning
since it is strongly closed it is also weakly closed (cf. Proposition 6.12) and
hence C D C". |

Corollary 6.15. Let (V)| - ||v/) be a normed space and (vy,)n>1 & sequence
s.t. v, — v weakly. Then there is a sequence w, € conv({v,}n>1) s.t.
wy, — v strongly.

Proof. By Proposition 6.14, conv({vy tn>1) and conv({vptns1)  coincide.
|

Another astonishing fact follows from the closed graph theorem and Propo-
sition 6.12.

Proposition 6.16. Let X,Y be Banach spaces and T: X — Y a linear
map that is continuous for the weak topologies on X and Y. Then T is
bounded and the converse also holds.

Proof. ( <= ) Follows from (1) of Proposition 5.24.

( = ) We use the closed graph theorem: graph(7T) C X x Y is weakly
closed and clearly convex. Hence it is strongly closed which implies 7' is
bounded. |

6.2. THE MARKOV-KAKUTANI FIXED POINT THEOREM
Let V be a topological vector space.

Definition 6.17. An automorphism of V is a bijective continuous linear
map T: V — V whose inverse T~!: V — V is continuous.

Then the set Aut(X) of automorphisms of X forms a group under com-
position.

Example 6.18. Let X be a compact Hausdorff space, V. = M(X) the
space of signed regular Borel measures with weak*-topology. In Chapter
5 we constructed a group homomorphism \*: Homeo(X) — Aut(E) which
takes the concrete form

N (W) (1) = Ve (p)-

We observed that the weakly*-compact convex subset M1 (X) of probability
measures is invariant under A* (1) for all ¢ € Homeo(X).
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Example 6.19. Let G be a group with discrete topology. A mean on G is
a continuous linear form v € (*°(G)* s.t.

(1) v(1g) =1

(2) v(f) =0 for all f € £>°(G) with f >0
Then the set

m(G) = {y € £*°(G)*: v is a mean}

is a convex weakly® closed subset of the unit ball of ¢°*°(G)* and hence
compact.
Now for all g € G and 7 € (*°(G), let

Mohv(@) = v(g™"2).
Then
(1) 1Al (@) = [Ille= (@) for all g € G and v € £2(G)
(2) Mgr92) = /\( 1)A(g2)-
Hence A(g): ¢>°(G) is a bijective isometry. Its adjoint A(g)*: (G) —
(®(G)* is therefore weakly* continuous. Setting \*(g) = (A(g)*)~! we
obtain a group homomorphism A*: G — Aut(¢*°(G)*). If m € (>°(G)

(A (gm)(7) = m(Mg™")).
Clearly, if m is a mean, \*(g)m is a mean for all g € G. Thus the compact
convex subset m(G) is invariant under \*(g) for all g € G.
Observe that if m € m(G) we can define a set function p: P(G) — Rxo
by u(F) := m(1g). This set function has then the following properties:

(1) w(G) =1
(2) w is finitely additive.

Theorem 6.20 (Markov-Kakutani). Let V' be a TVS generated by a suf-
ficient family of seminorms, G an abelian group and 7: G — Aut(V) a
homomorphism. Assume that A C V is compact, convex, nonempty and
G-invariant, that is m(g)(A) C A for all g € G. Then there exists a point in
A that is fixed by 7(g) for all g € G.

then

Proof. For every g € G and n > 1, define
1
Myg: V=V, U’_)*Zﬂ-(gk)(v)'

Then M, , is a continuous linear map and since A is convex and m(g*)(A) C
A we have M, 4(A) C A. Let

G ={Mp, go--0oMyg:£=>1n1,....,np N, g1,...,9¢ € G}.

This is a family of continuous linear maps V' — V with the following prop-
erties:

(1) fT,S € G* then To S € G*.
(2) T(A) c Aforall T € G*.



71

B)UT,SeG* thenToS=S50T.
To see (3) it suffices to show that M, ;0 M,, , = My, 0 M, , which follows
from a direct computation (using that G is abelian).
Claim: (pcq- T(A) # @.
We note that T(A) C A is compact for all T € G* so that it is sufficient?
to show that for all 71, ...,7y € G* we have ﬂi:l Ti(A) # 2.
We have that for all 1 < k </,
Ty (A) D Tp(T1 -+ Th—1 i1 Te) (A)
and since all T}’s commute we obtain
To(Ty -+ T T Ty) =Ty - - - Ty

and hence
4
ﬂ Tk(A) o1y -- -TZ(A) + O
k=1

which proves the claim.
Let now y € (\peg« T(A). Then it follows that for all n > 1 and g € G
there exists some x,, 4 € A with M, 4(z,4) = v, i.e.

|
—

n

y= W(gk>(xn,g)-

0

1
n

e
Il

It follows that

7(9)() —y = - (x(g")(ng) — ng)

Now, let {||-||a }aca be the sufficient family of seminorms defining the topol-
ogy on V. Then for all a € A,

1
Sl (g") (@ng)lla + llznglla)-
Let By := sup,c ||v]|la < 400, since A is compact. We conclude that
2B,

[7(9)(v) — ylla <

I7(9)(y) — ylla <

for alln > 1, hence ||7(9)(y) —y||la = 0 for all « € A. This yields 7(g)(y) =y
for all g € G. |

In the context of Example 6.18 we obtain the following corollaries, which
we state in terms of group actions. Recall that a group action of a group G
on a set X is a map

GXX—)X> (g,:z:)i—>g*:1:

satisfying the following axioms:
(1) exz =z for all z € X.
(2) (9192)+x = (g1)«(g2)«(z) for all g1,g2 € G and all z € X.

Lt Proposition 8.2, this is a characterisation of compactness.
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If X is a topological space, the group action is by homeomorphisms if for
all g € G the map

Vg X — X, o+ gux
is a homeomorphism.

Corollary 6.21. Let G x X — X be an action by homeomorphism of
an abelian group G on a compact Hausdorff space X. Then there exists an
invariant probability measure, that is, there exists 4 € M (X) s.t. (¢g)spt =
u for all g € G.

Proof. We apply Theorem 6.20 to the space V' = M(X) of signed regu-
lar Borel measures with weak® topology and the homomorphism 7: G —
Aut(V') obtained by composing

G — Homeo(X) X, Aut(V)

g g I )‘*(1/19)-

Then the weak* compact convex subset M1(X) is invariant under 7(g) for
all g € G and the corollary follows by invoking the just proven theorem. M

Corollary 6.22. Let X be a compact Hausdorff space and ¢ € Homeo(X).
Then there exists u € M*(X) with 1. (1) = p.

Proof. Apply the preceding corollary to the group action
ZxX—X, (nx)—¢"(z).

In the context of Example 6.19 we obtain the following corollary.

Corollary 6.23. Let G be an abelian group. Then there exists a mean
m € m(G) that is invariant under A\*(g) for all g € G. In particular there
exist a set function p: 2¢ — [0, 1] with the properties

(1) w(G) =1

(2) p is finitely additive

(3) u(gE) = u(F) for all g € G and E C G.

This Corollary is the starting point of the theory of amenable groups: a
group G is amenable if there is a mean m € m(G) that is invariant under
"left translations”, that is A*(¢g)m = m for all g € G. Not all groups are
amenable; for instance, the free groups G = F(a, b) on two generators is not,
and this is intimately connected to the paradoxical decomposition mentioned
back, in Theorem [tbd., Chapter 2.2] (Banach-Tarski paradox).

Remark 6.24. The countable group G has property (F) if there exists a
sequence F,, C G of finite subsets s.t. for all g € G

0.
| Fnl
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Then one can shows hat the conclusion of Theorem 6.20 holds for any count-
able group G satisfying (F). In particular such a G is amenable; it is a
Theorem of Follner that the converse holds.

Assume next that X is a compact Hausdorff space and ¢: X — X is
a homeomorphism. We know now that there exist i-invariant probabil-
ity measures on X. The case where there is a unique such is particularly
interesting.

Theorem 6.25. Assume that there is a unique -invariant probability mea-
sure ;1 on X. Then for all f € C(X),

. 1 n—1 i
Jm 57 k@) = [ rau
k=0
the convergence being uniform in z € X.

Proof. Let (ng)r>1 be a strictly increasing sequence in N and (zx)g>1 a
sequence in X. Define the sequence of probability measures,

ng—1

Z 6¢j(i€k) < Ml(X)
=0

1
fig = —
Tk

Let v be any accumulation point of this sequence (w.r.t. weak® topology),
that is:

Ve m{,uk:k:>N}.
N>1
Then for all f € C(X),

wi(f o 0) — i (f) = nlk(f(@b”’“ () — F(xx))

and hence

2|11

[ (f 0 ) = e (f)] <
N
which implies that v is -invariant.
(2) If the convergence in the theorem is not uniform, there is f € C(X)

and € > 0 s.t.

lim sup sup
n—oo zreX

—1
1 n
LY FR) — [ ] >
k=0 X
Thus there is a strictly increasing sequence (ng)g>1 and a sequence (xg)r>1

in X with
1 ne—1

LY i) - [

=0 X

fd,u'>5

which by (1) would lead to a 1-invariant probability measure v # p. [ |
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In specific situations it is relatively easy to establish uniqueness of the
1-invariant measure, as the following example shows.

Example 6.26. In the notations of Chapter 3 ”"the problem of measure”,
we defined the probability measure A € M!(R/Z) which on continuous
functions f € C(R/Z) is given by

1
0= /0 F(r(x)) dA(x)

where 7: R — R/Z is the canonical projection and A the Lebesgue measure
on R normalised s.t. A([0,1]) = 1. For @ € R/Z the map

To:R/Z—-R/Z, z— 2+
is a homeomorphism. For a € Q/Z, let « = p/q + Z where p,q € N are
coprime. Then (7,)? = idg/z and for all z € R/Z,

11
k=0

is an T,-invariant probability measure; of course, A itself is T,-invariant
for all &« € R/Z. The point is then that for a ¢ Q/Z, X is the unique
T,-invariant probability measure. As a result we get from Theorem 6.25

n—1
1
=) fla+ ka) — fd\
"o R/Z
uniformly for all f € C(R/Z).

6.3. EXTREME POINTS AND THE KREIN-MILMAN THEOREM
Let V be an R-vector space. For xz,y € V we define
[z,y] ={(1 —t)z+ty: t €[0,1]}
(,y) ={(1—t)x+ty: t € (0,1)}
so for example (z,z) = {x}.
Definition 6.27. Let A C V be a convex subset.

(1) z € A is an extreme point of A if x € (y,z) with y,z € A implies
r=y =z

(2) A convex subset B C A is extreme in A if (y,z) N B # & with
y,z € A implies [y, z] C B.

For example, the extreme points of a triangle are its corners and its ex-
treme sets are the entire Triangle, the edges and corners.

Theorem 6.28. Let V be a TVS defined by a sufficient family of seminorms
and A C V convex compact. Then

A = conv(ex(A)).
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Before entering the proof, which uses the second geometric form of Hahn-
Banach, we make the following remark.

Remark 6.29. Let A C B C C be convex subsets. Then, if A is extreme
in B and B is extreme in C, A is extreme in C. Indeed, suppose that
(y,z2) N A # & for y,z € C. Then, since A C B, (y,z) N B # @ so since B
is extreme in C' we have [y, z] C B and hence [y, z] C A since A is extreme
in B.

Now lets get to the proof of the theorem.

Proof. (1) We first show that every closed convex nonempty extreme subset
B C A contains an extreme point of A. To this end, consider

E(B) :={c: C C B, C is nonempty, closed, convex and extreme in A}

with the ordering C7 < Cy if Cy C (7. This is a partially ordered set
and we now show that every totally ordered subset has an upper bound.
Let C C &(B) be totally ordered and define M := (1., C. Since C is
totally ordered, given any finite subset {C1,...,C,} of C we may assume
wlog that C; C --- C €, and hence (;_; Cy = C1 # &. By compactness
of A we deduce M # @. Clearly, M is closed and convex; in addition, if
(y,z) "M # @ with y,z € A then for all C' € C, since C' is extreme in A, we
have [y, z] C C and hence [y,z] C M. Thus M € £(B) and it is an upper
bound of C. By Zorn’s lemma there exists a maximal element Z € £(B); we
claim that Z is a single point.

For the contrary, assume that there exist x,y € Z with x # y. By
Hahn-Banach there is F' € V* with F(z) < F(y). Now consider m :=
max{F(z): z € Z} which exists since Z is compact and D = {z € Z: F(z) =
m}. Then D is closed and convex; in addition, if v,w € Z and (v, w)ND # @
then for some ¢ € (0,1),

m=F((1—-t)v+tw) > F(v) > F(w).
From
(1—-t)F(v) +tF(w) = F((1 —t)v+tw) > F(v)
and t > 0 we get F'(w) > F(v) and from
(1—-t)F(v) +tF(w) > F(w)

with 1 —¢ > 0 we get F(v) > F(w). Thus, F(v) = F(w) = m. This shows
that [v,w] C D and hence D is extreme in Z so extreme in A by Remark
6.29. On the other hand, F(z) < F(y) so that x ¢ D which contradicts the
maximality of Z.

(2) Above we have shown that ex(A) # @. Clearly, A D conv(ex(A)); if

there now were x € A and = ¢ conv(ex(A)) then by the second geometric
form of Hahn-Banach there is a € R and F' € V* such that

F(z) >a> F(y)
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for all y € conv(ex(A)). Consider now, as above,
m :=max{F(z): z € A}
D:={z€ A: F(z) =m}.
As above, D is closed, convex and extreme in A hence by (1) contains an
extreme point e of A. But then
F(e) > F(z) > a> F(y)
for all y € ex(A), a contradiction. [ |

Let G x X — X be a countable group acting by homeomorphisms on a
compact Hausdorff space. An example is G = Z and the action is

ZxX—X
(m, ) = ™ (x)

where ¢ € Homeo(X). There is a measure theoretic notion of transitivity
which which plays a central role in dynamics.

Definition 6.30. A G-invariant probability measure p € M1(X) is called
ergodic if whenever S C X is a G-invariant measurable set, we have either
u(S)=0or u(X\S)=0.

If now M'(X)% denotes the subsets of M'(X) of G-invariant probability
measures then M!(X) is convex and weakly* closed, hence compact.

Lemma 6.31. ;€ M'(X)% is ergodic iff ;1 is an extreme point of M*(X)%.

Proof. We only prove the ( <= ) direction: if p is not ergodic there is
S C X measurable G-invariant with 0 < p(S) < 1. Define then

1 1
= o gy M2 = oo Ml -
p(s) e p(X\9) TS
Then py, 2 € M1(X)Y and
= p(S)p1 + p(X \ S)pe.
Since pu # p1 and p # peo, p is not an extreme point. |

The Kreinn-Milman Theorem then implies the following corollary.

Corollary 6.32. If there exists a G-invariant probability measure on X
then there is an ergodic one. In fact, every G-invariant probability measure
is a weak™ limit of convex combinations of ergodic ones.



7

Chapter 7. Fourier analysis and Sobolev embedding theorem

Recall that in Example 7?7 we defined a family of function spaces on R"
called Sobolev spaces, denoted W*P?(R?) where p > 1 and p € N. Loosely
speaking, W*P(R?) consists of all functions admitting weak derivatives up to
order s that are in LP(R?). In this chapter we shall concentrate on W*?2(R%)
and show that if s > r + 5 this space consists of bounded C"-functions. The
means to achieve this is Fourier Analysis and the Plancherel Theorem to
which we turn now.

7.1. Basic FOURIER ANALYSIS ON R¢

For a thorough treatment we refer to Ioacobelli, Analysis 4, Chapter 3.
Here we will recall the basic definitions and theorems necessary four our
purposes. For z,& € R% we write ¢ - z for the euclidean inner product, and
we set

(o) = [ fado
R
whenever |fg| € L'(RY).
Definition 7.1. For f € L'(R%) define the Fourier transform® of f by

f) = | e da

Recall that
Co(R?) = {fi R? — C: f is continuous and lim f(€) = 0}

|§| =00

which together with the usual sup norm || e |« is a Banach space.

Proposition 7.2. If f € L'(R%) then f € Co(R%) and the operator
F:L'RY — Co(RY), fr f
has operator norm ||F]|| < 1.

Proof. First let us show that f is continuous. This follows from the domi-
nated convergence theorem since | f(x)e274+2)| = | f(z)| and thus

. » 1 —2mi{€+h,x)
lim 61 = Jim [ fa)e da

d h—0

—/ lim f(x)e_2m<£+h7x> dx = f(f)
R

For the second part we give an argument that generalises well to the case
of LCA groups (in our case of R? one could also proceed with integration

IThere exist different conventions for the definition of the Fourier transform, each
making certain properties more concise to state. Another common convention is

fO=@m" | fa)e " do
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by parts). First we show it for f € C.(R?%). Comparing f to 7,f, where
Thf(x) = f(x — h), we note that for any h, & € RY

/ |f(z) = f(x)| dx > ’/ z) — o f(z))e —2mi{,x) g
F(&) = e PN F(©)] = |f(9)] - [1 — e >mHEM)]

using (1) of Lemma 7.6. By continuity and dominated convergence we know
that the left term goes to zero as h — 0. Now for any (&,)n>1 s.t. |§n| — 00
set (hp)ns1 St. |hn| = 2 and |1 — e 2™4&)| > 1 so that the above

5 \
calculation gives us

Tim [ f(&a)] < lim [|f =7, fll 1 ray = 0
as desired. Employing density of C (Rd) in L'(RY), for f € L'(RY) and
e > 0 we pick g € C.(RY) with || f — 9l mey < € and find

F(z)e 2467 gz | < limsup |§(€)| +e =&
" el—oc

limsup | f(¢)| = limsup

|§|—o0 |§| =00

The last assertion follows from | f(€) | < | £ll L1(R4)- [ |

Lemma 7.3. Let 1 < p < +oc and f € LP(R%). Then
R? — LP(RY), hw— 7 f
is continuous.

Remark 7.4. Observe that for f € L®(R?), h — 7, f is continuous iff f
coincides almost everywhere with a uniformly continuous function.

Proof. It suffices to prove continuity at zero since for y,h € R? we have
1Tasnf = Taflpoay = I7af = fllioae)y- Again by density of Ce(R?) in
LY(RY) we may assume f € C.(RY) yielding

tin 1 = 15y gy = [ Tim 1@ = 1) = f(@)] dz =0
by dominated convergence. |

One of the major difficulties with the Fourier transform is that for f €
2 (rays f does not satisfy any global integrability conditions on R%. The
next proposition specifies a class of function in ||[| 1 (gay whose Fourier trans-
form is in ||[[zp(gay for all p > 1.

Recall that C¥ (R%) is the space of compactly supported functions which
k times continuously differentiable. Recall also some multi-index notation:
Given (ai,..., o) € N? we define

0 = o
and for £ € R set £* = ¢ -+ €74
Proposition 7.5.
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(1) If f € CHRY), then 0, f(€) = 2mig; /(€)
(2) If f € CK(RY) and |a| < k, then 9of (&) = (2mi)loleaf(€)
(3) If f € C°(R%), then f € Co(Rd) N LP(R?) for all p > 1.
Proof.
(1) Via integration by parts we find (since f has compact support)

@j\f(f) —/Rd(amjf(x))e—zm@,x) g
=— | f(2)0y,e 2 dz = 21ig; f(€)

Rd
(2) Follows by induction from (1).
(3) Using (2) we get that £ f(&) is bounded for all o and so is
[15-1(1 +€)F(©). u
Assertion (2) of the above proposition is of considerable interest since it
shows that F converts the operator 9% into a simple multiplication.

For a € R\{0}, let us define o, f(x) = f(x/a). We then have the following
properties:

Lemma 7.6. For f € L'(R%) it holds

(1) Tf(&) = e2mEmfe)
(2) /(€)= F(& = h) = e2mithe) £ ()
(3) ouf(€ §) = a'o1/af(€) = a’f(ag)
(4) 0uf(€) = f(€/a) = a%oyu(€)

Proof. These are straightforward calculations. |
Example 7.7. The function ¢(z) = e~me” satisfies » = .

Proof. We compute it for d = 1, the general case then follows.

b = [ e o
R

:eﬂfz/ e*ﬂ'((lt*if)z dr
R

2 2 2
—ewg/e”d:r—ewg.
R

Let us now define the inverse Fourier transform:

Definition 7.8. For g € L'(RY) define



80
Note that § = Fg so we may easily transfer the already established prop-
erties to g. We may also use the notation
Flg=g
which is justified by
Lemma 7.9. If f,g € L'(RY) then
(Ff.9)={f.F"g).

Now we are in the position to show a version of the Fourier inversion
formula.

Theorem 7.10. For f € C°(R?) we have F*Ff = f.
Proof. It suffices to show that F*F£(0) = £(0) for all f € C®(R?). Indeed,

assuming this we have
f(x) = 7o f(0) = F*Fr_o f(0) = F*(e 2™®®) F£)(0) = F*Ff(x).

We now want to show that

R
for f € C(R%), or in other words that f(0) = <f,1>. Consider ¢(x) =

e~™7* and ¢, (z) = p(x/a) and notice that by Example 7.7 ¢ satisfies the
inversion formula, and hence also ¢, since

F*Foa=F Foap = Fraloyf = f.

Now ¢, — 1 pointwise as a — 400 (in fact uniformly on compact sets) and
|f()¢a(z)| < |f(z)| meaning dominated convergence gives us (f,¢a) —
<f, 1> as @ — o0. On the other hand we have

(f,pa) = (f, F*0a)
= <f’ anal/a"r*(p>

— [ sweFeaide = [ fa/oF @ d
Rd R4

Again, © — f(x/a) converges pointwise to f(0) as a — oo and since
|f(z/a)Fro(x)| < | f1l oo (may[p(2)| We can apply dominated convergence
to conclude

lim (f, a) = / Fro(@) dz = £(0 )/Rdw(:v)dfc:f(O)-

a—00

Corollary 7.11. For all f,g € C(?O(Rd) we have (Ff,Fg) = (f,g). In
particular HfHLz(Rd) = ||f||L2(Rd)-
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Theorem 7.12 (Plancherel). The map
F: LYRY) N L2 (RY) — Cy(RY)
extends uniquely to a unitary operator F: L?(R%) — L?(R%).
We will need the following

Lemma 7.13. Let X, Y be Banach spaces with respective norms || e ||x, || ®
ly, £ C X a vector subspace and T: E — Y a bounded linear operator.

Then T extends uniquely to a bounded linear operator T': E — Y. Ifin
addition || Tz|ly = ||x||x for all z € E the same will hold for T and z € E.
Proof. For x € E and (z,)p>1 C E with 2, — 2 we define

Tz = lim Txy,.
n—oo

This limit exists since
[T2n — Tamlly < |Tllzn — zmllx
and is also independent of the chosen sequence since if ¥, — x then
[Tyn = Tnlly < ITlllyn — xnllx — 0.

Lastly, if the assumption in the second assertion holds, for z € E and any
T, — * we have

|Tz|ly = lim |Tznly = lim ||@.]|x = ||z x.
n—oo n—oo
]

Proof. (Theorem 7.12)

Since || FollL2me) = ¢l 2ma) for all ¢ € C>®(RY) and C°(RY) is dense
in L2(R%) (c.f. ), the above lemma tells us that F extends uniquely to an
isometry F: L?(R%) — L2(R?). We claim that for f € L'(R%) n L?(RY),
Ff = f. Indeed, if (¢n)n>1 C C°(R?) converges to f in L2(R%), then by
definition F f = lim,— 00 Fppn. By Corollary 7.11 we have

len — fllzmay = 60 — f||L2(Rd)
0 ¢p — f in L?(RY) giving us ff = f. o
For surjectivity we note that since F*f = Ff, F* is also norm-preserving

and by density extends to all of L?(R%). Since F*F = FF* = id on the
dense subspace C2°(R?), it holds on all of L?(R%). [ ]

7.2. CONVOLUTION

Definition 7.14. Given measurable f,g: R? — C and z € R? s.t. y —
f(z —y)g(y) is in L'(R?) we define

frgla) = / f(@ - y)gly) dy.
Rd
We recall
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Proposition 7.15 (Young’s inequality). Let 1 < p,q,r < 400 s.t. 1+ % =
%—i— %. Then if f € LP(R%) and g € LY(R%), f x g is well defined and it holds

1f * gllr ey < 1l o ayllgll Laray-

In the case p = 1 this gives || f * gl Lare) < Il 21®e) 19/l Lamra)-
One of the main points of the convolution product is that the Fourier

transform turns pointwise products into convolutions, namely for f,g €
Ll(Rd) we have

9= [ [ fa—nal)e ™ dyda

—/‘mw mﬁy@/'fx— e 2Ee 1) gy = F(£)3(€)
Rd

whereby we can apply Fubini’s theorem due to

/}{d /]?{d = )‘ dy d.%' ”fHLl(Rd)HgHLl(Rd)

by Young’s inequality.
Our next goal will be to construct a sequence 7. € C®(R?) s.t. for
1 < p < +o0 and every f € LP(R?), n. x f — f in LP(R?) as € | 0 and
ne * f € C®(RY): such a sequence 7, is called "mollifier” or “approximate
identity” and is a very useful tool.
Proposition 7.16. If f € C°(R?) and g € LP(R?) then f * g € C°(R?)
and Oy, (f xg) = (O, f) x g for all 1 < i < n.
For the proof, recall differentiation under the integral, namely
Lemma 7.17. Let (X, A, u) be a o-finite measure space, I C R open and
f: I x X — C a measurable function s.t.
(1) f(t,e) € LY(X) forallt €I
(2) f(e,z) is differentiable for a.e. x € X

(3) there exists g € LY(X) s.t. [0,f(t,x)| < g(z) for all t € I and a.e.
reX.

Then for every to € I we have

(8t/)(f(t,x) d:c> ‘t:to :/Xatf(to,x) dx

Proof. (Proposition 7.16)
For the sake of a simple notation we will show differentiability at = 0
for i = 1. Now if B := B<,(0) is s.t. supp(f) C B, then

(% / fz—=y)g(y) dy> ) = (&e f(ter —y)g(y)1p(ter —y) dy) ’
R4 x=0 Rd
and we can apply Lemma 7.17 to

h:IxRY, ht,y) = f(tey —y)g(y)1p(ter — y).

t=0
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where I = (—¢,¢) is some open interval around zero. Indeed,
1, @) 1 ety < 11l oe ety |9l oy £4(B)VT < o0
for all t € I as well as
0ch(t, y)| < (|02, fll Loo r)|9(W) 1B 4 (—c.)er (V)]
where glpi(_cc)e, € LY(RY). |

Now we turn to the construction of approximate identity: fix any n €
C(RY) with [z n(z)dz =1 and for € > 0 let

1 /=
ne(@) = Zm(2).
Then n. € C(RY), [gan-(x) dz = 1 and if supp(n) C B<,(0) then supp(n.) C
B<.-(0).
Proposition 7.18.

(1) If f € C(R?) then 7. * f — f uniformly on compact sets as € | 0
(2) If 1 < p < +ooand f € LP(R?), then n. + f — fin LP(R%) as e | 0.

Proof.
(1) We compute
< F0) = @) = | [ 0076 = ) = )y
< sup  |f(z—y)— f(2)]
y€B<E’V‘(O)

which by continuity of f shows (1).
(2) By density, for 0 < ¢ < 1 we may choose ¢ € C.(RY) s.t. |l¢ —
fHLp(Rd) < e. Then

Ime * [ = fllermey < ne x f = ne % @l omay + 1m0 — @llomay + Il — fllooma)-
Now
7 * f = e * ol Lomay = 7 * (f — @) o me)
< nellpiway lf — ellprmay = 1f — ellomey < e
Lastly, supp(n: * ¢) C B<(0) + supp(p) := K so

I+ 9 = @llpay = |11+ o) = )P dy

< sup [n- * o(y) — (y)|PLYK)
yeK

which by (1) vanishes as ¢ | 0. [
This construction immediately gives us the following important corollary:

Corollary 7.19. Let Q € R be an open subset and 1 < p < +o00. Then
C2°(9) is dense in LP(€2).
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Proof. Since (2 is locally compact and the Lebesgue measure is Radon,
C.(f2) is dense in LP(2). Now for any f € C.(Q2) we have that n. x f €
C*(R?) for all € > 0 small enough s.t. supp(n:*f) = Bz (0)+supp(f) C Q2
and . x f — fin LP(Q) ase | 0. |

Here is another applicaiton that enters in the proof of Plancherel:

Lemma 7.20. Let 1 < p,¢ < +o0 and f € LP(R%) N LY(R?). Then there
is a sequence (¢n,)n>1 C CX(RY) s.t. ¢, — f in LP(R?) and LI(RY).

7.3. WEAK DERIVATIVES

Let @ C R? be open. Recall that for f € C®(Q) and ¢ € CX(Q)
integration by parts gives

/Qfa("w: (—1)'6“'/9(3‘“10)@-

We use this to define weak derivatives:

Definition 7.21. Let f,g € L{ (), then g is the weak a-th partial deriv-
ative of f on Q if

/Q forp = (—1)le /Q he

Observe that since ¢ and 9%p are compactly supported, these integrals
make sense. Our first task is to that if such a weak derivative exists, it is
unique. This will follow from

Lemma 7.22. Let g € Ll (). If [ g9 =0 for all ¢ € C°(2) then g =0
a.e.

for all p € C*(Q).

Proof. Suppose that g does not vanish a.e., then w.lo.g. S := {g > 0}
has non-zero measure. Let § := £%(S) and choose a compact set K C S
st. LYK) > LYS) — §/2 = §/2. Now choose an approximate identity 7.
s.t. supp(n:) C B<:(0) and €9 > 0 small enough s.t. supp(ne, * 1x) C
B<.,(0) + K C Q. Then for 0 < ¢ < g9 we have 7. * 1 € C2°(2) and

/9(775*11():/91K+/9(776*1K_1K)'
0 0 Q

The first term is by assumption positive and the second term can be made
arbitrarily small: Pass to a subsequence s.t. 7., * 1x — 1k pointwise
a.e. and apply dominated convergence, using that supp(n. * 1x — 1x) C
Becy0) + K and

900, * 1 = 1)| < Sup 17, * 1 = 1k || Lo (0|91 B (0)+ K|

< l9lb., (0)+k|

We conclude that fQ gp > 0 for ¢ =mn., * 1 and k large enough. |
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If g is the weak a-partial derivative of f, we write g = 95 f. In particular
it follows from Lemma 7.22 that if f € C*°(Q) then 95 f = 0“f.

Example 7.24. Let o > 0 and f(t) = |t|*. Then f € L] _(R) and the weak
derivative 9 f exists and is equal to asgn(t)[t|* L.

Now we can define Sobolev spaces WH?(Q):
Definition 7.25.
WEP(Q) = {f: Q — C: 9% f exists for all |a| < k and ¥ f € LP(Q)}.
We define the norm on W#P() by:
I lwnoey = > 105 FIlzr)
|la|<k
Proposition 7.26. W#?(Q) is a Banach space.

Proof. Let (fi)x>1 be a Cauchy sequence in W*P(Q). Then for all a with
la| < k, (03f)k>1 is a Cauchy sequence in LP(2) and hence has a limit
fe e LP(Q); let f = f* for a = (0,...,0) and observe that f* € LP(Q) C
LY (Q) C LL.(Q). By definition we have for all |a| < k and ¢ € C°(Q):

loc
| nore =0 [ @ne
Q Q
but as 02 fr — f¢ in LP(Q) and p € L'(Q) we get

/Q(aféfk)wﬁ/ﬂf%.
Since fr — f in LP(Q) we get

9% = (—1 | «
/Qf = (-1) /Qf @
and hence 05 f = f*. |

Remark 7.27. W52(Q) is a Hilbert space; in fact for f, g € W*2(Q)
(f9)=>_(0arf,059)
lal<k
leads to the norm
1/2
191= (3 10610
lo|<k

which is equivalent to | f[[y2.x(q)-
Let

Crp(Q) = {f € C(Q): |0° fll v () < +oo for all [af < k}.
Then CF5,(€2) C WHP(Q) and it is a fact that the former is dense in the

latter for any open  C R% The proof of this is rather delicate and here
we will show it for Q = R?. To this end we collect some simple facts about
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weak derivatives which will be also useful later on in the proof of the Sobolev
embedding theorem.

Lemma 7.28.
(1) If f € WFP(Q) and |a| + |8] < k then 8202 f = 03tF f
(2) If f € WFP(Q) and ¢ € C°(Q) then of € WFP(Q)
(3) If ¢ € CX(RY) and f € WFP(R?) then p x f € C’,‘fp(Rd) and
O(px*f)=p*x0%f for all |a] <k
Proof.
(1) For all ¢ € C°(£2) we have

/(3aaﬂf a|/ (09 )00
1)“|+|5/Qfaw%:/ﬂ(agwf)cp.

By Lemma 7.22 we get a;;;aﬁ,f = 83,+ﬁf.
(2) Let ¢ € C*(RY); we may assume k > 1

/@f(?jw = / (0 —1p0jp)
Q Q

Z/Qfaj@¢—/ﬂf¢5j<ﬁ

- [@ e [ oo

. /Q (@ o+ FO,0)0.

Since 9} f € LP(Q) and f € LP(Q) so is (0] f)p + fO;¢ and hence 97 (¢f)
exists and is in LP(2) and 9} (pf) = @9y f + fOjp for all 1 < j < d. One
completes the proof by recurrence on |a| using the formula

()= > (g) %00 Fy)

0<p<La

and integrating by parts.

(3) We know that @ f € C*°(R?) by Proposition 7.16, and also ¢S f €
LP(R%) for all |a| < k by Proposition 7.15. Thus it suffices to show that
O%p* f) = @ x0%f for all |a] < k. We have for all ¢ € C°(R?)

[ eranw= [ @n@ew

where we set () = ¢(—x). The latter equals

'a'/ 107 (B ) = 'a/ (% )0 = /aw*

and shows 0%(p * f) = ¢ x 03 f. [
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Proposition 7.29. For 1 < p < 400, C’,‘;‘;(Rd) is dense in WHP(RY).

Proof. Let 7. be an approximate unity and f € W*?(R%). By Lemma

728, n-* f € C’,‘Z’p(Rd) and 0%(ne * f) = n. x 0% f for all || < k. By

Proposition 7.18 (2) we have for |a| < k, 7. * 0% f — 02f in LP(RY) and

hence 9%(n. * f) — 02f in LP(RY). [ |
7.4. SOBOLEV EMBEDDING THEOREMS

The aim of this section is to prove

Theorem 7.30 (Sobolev). If f € WF2(R?) and k > 7+ 4 then f € CJ (RY).
Moreover, the inclusion W*2(R%) — C7(R?) is a bounded operator.

Remark 7.31. More precisely, if f € W*2(R%), f coincides a.e. with a
C"-function that is bounded. Interestingly, while in the statement of the
theorem there is no Fourier transform, the latter is a crucial tool in the
proof.

We proceed with three lemmas.
Lemma 7.32. If f € W*2(R?) then for all |a| < k
05.f(€) = (2m1) e f (¢)
and in particular £€*f € L*(R?) for all |a| < k

Proof. By induction it reduces to the case k = 1. Let ¢ € C®(R%); since
9y f € L?*(R%) we have by Plancherel

(@ 1,0) = (07 1.0) = = (£, 0590) = —{, Dj0).
By Proposition 7.5 (1) we have

Bjp(€) = 2mit;p(€)
and thus

—(f,39) = /f B0(6) dé = /f €)2mit; 5(€) dé = (2mit; f, 3).

Finally, since {4: ¢ € C°(R%)} is dense in L?(R%) we obtain the desired
result. |

For the sake of the applications we have in mind we formulate the next
lemma in terms of the inverse Fourier transform, which we recall is given by

h(z) = /R ) h(€)e2™&) ge.

Lemma 7.33. Let r € N, assume h € L'(R%) and ¢*h € LY(R?) for all
la| < r. Then h € CJ(R?) and 9%h(z) = (2mi)l®l(¢*R)Y (x).

Proof. As usual, by induction this reduces to the case r = 1 where a dif-
ferentiation under the integral sign establishes the claim. |
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Lemma 7.34. Let r > 0; assume f € L2(R%) and £*f € LY (R%) for all

la <. Then f € C7(RY) and 9°/=Cr0"!(e21) "

Proof. Apply the preceding lemma to h = f: then we get that h € Cr(RY)

and 9°h(z) :V(27Ti)|a|(§ah)v(x). Now use the hypothesis f € L2(R%) to

conclude h = f = f. |
Now we turn to the proof of Theorem 7.30.

Proof. By Lemma 7.32 we have £*f € L?(R%) for all |a| < k. In order to
show that f € CF (R?) it suffices to show that £¢*f € L1(R?) for all |a| < 7.

N

To this end, write £€*f = gh,, where

g=1+¢"f
ho =
R EATIL

Let’s show that h,g € L?(R%) . This will imply, for |a| < r,

1€ Il ey < N9l 2@ lhall 2@y
Lemma 7.34 will then imply that f € CJ(R?) and 8%/ = (2mi)ll (¢2/ )"
and thus [[0%f|| oo (ra) < HfafHLl(Rd)' On the other hand we will relate
9]l L2(may to the Sobolev norm of f, concluding hte proof.
To estimate ||g|[2(ge), use that [¢] < Z;l:l |€;| and hence

d d 1/k
€< gl <n (i)
= =1

. - d
ie. [€F <kl > =1 &;|*. Thus

~ d A~
R IES )
=1

which implies, using Lemma 7.32 and Plancherel,

d
ey <5 (1 sy + D2 198 Mliamen ) < 0~ ey
j=1

Next,
« T
e _ I

OIS T g S T e

and in polar coordinates

|§’27‘ B o7} a1 7027'
/Rd (1+|§k>2d§_0d/0 T

which converges iff &k > r + %l. |
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Chapter 8. Miscellaneous
8.1. TOPOLOGY

Proposition 8.1. A metric space (X,d) is compact if and only if it is
complete and totally bounded. X is totally bounded if Ve > 0 there exists
some finite subset A C X s.t.

X = | J B<(a)

acA
i.e. X is the union of finitely many balls of radius ¢.

Proof. We show that it is equivalent to sequential compactness. First, to see
that it implies sequential compactness, for any (a,)n>1 C X we construct a
convergent subsequence (by, ),>1 as follows: By total boundedness of X there
exist 21, ..., 2m s.t. X = i, B<i(zy) so there exists a (1) € {1, ..., 2}
s.t. infinitely many sequence members lie in B<j(xg), set by to any of these
sequence members. Then b, is defined as one of the infinitely many sequence
members lying in the set ();_; Bgl/k(x(k)) with ) iteratively chosen as
described above. Then (by,),>1 is a Cauchy sequence and since M is complete
it converges.

For the other direction, if (a,),>1 is a Cauchy sequence then there exists a
convergent subsequence (an, )r>1 since M is sequentially compact. Writing
[ for the limit of this subsequence we see that the entire sequence converges
to [ since

d(an,l) < d(ap,an,) + d(an,,1)
Next, suppose M was not totally bounded so that there exists an ¢ > 0
s.t. M can not be covered by finitely many balls of radius . Now define
the sequence (zy)n,>1 recursively by 1 € X and z, € X \ (UZ;% B (zk))
so that d(z,z,) > € for all n,m > 1 and hence (z,),>1 can not contain a
convergent subsequence, a contradiction. |

Proposition 8.2. Let X be a topological space. Then the following are
equivalent:
(1) Every open cover of X admits a finite open subcover.
(2) If {Fy}aeca is family of closed subsets of X s.t. for every finite subset
J C A, Njey Fj # 2, then also (e 4 Fo # 2.

Proof. (1) = (2) Let {F,, }aca be a family of closed sets such that (1 ; F; #
@ for all finite J C A but (), 4 Fo = @. Then {X\ F,}nc.4 is an open cover
of X and hence, by assumption, admits a finite open subcover {Uy, ..., Uy, }.
However, this means that (J,, Uy = X so that ()}, X \ Uy = @. But
X\ Uy € {Fa}aca which contradicts that finite intersections of sets belong-
ing to this family are non-empty.

(2) = (1) Let {Us}aca be an open cover of X that does not admit a
finite open subcover. Then for every finite J C A we have Uje sUi #X
meaning {X \ Uy }aca is a family of closed sets s.t. the intersection of every
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finite subfamily is non-empty. By assumption this means ()¢ 4 (X \Ua) # @
contradicting that {U,}aca is an open cover of X. [ |

8.2. MEASURE THEORY

Theorem 8.3 (Change of variables). Let (X, B, i) be a measure space and
let ¢: X — Y be a measurable function from (X, B) to another measurable
space (Y,C). Then for all measurable functions f: Y — [0, +oc] we have

[ Godrau= [ o

whereby ¢.p: C — [0, 4+00] is the pushforward of u by ¢ given by ¢, u(FE) :=
p(o~H(E)).
Proof. First, if f = 1g is an indicator function, for £ € C we have

/X (o) du= /X 1(p(x)) d(z) = /X 11y () dps() = (6 (E))

and using the definition of the pushforward we find

e B
w(6™Y(E)) = dup(E) = /Y ) d o / f .

Using linearity one sees that this equality holds for all simple functions so an
application of the monotone convergence theorem concludes the proof. M



REFERENCES 91

REFERENCES

[SS11] Elias M Stein and Rami Shakarchi. Functional analysis: intro-
duction to further topics in analysis. Vol. 4. Princeton University
Press, 2011.

[Taol0]  Terence Tao. An Epsilon of Room, II: pages from year three of a
mathematical blog. American Mathematical Society Providence,
RI, 2010.

[Whi66]  Robert Whitley. “Projecting m onto c0”. In: The American Math-
ematical Monthly 73.3 (1966), pp. 285—286.



	Chapter 1. Banach Spaces, bounded linear Maps: first properties and examples
	1.1. Normed Spaces, Banach Spaces, Examples
	1.2. Continuous Linear Maps

	Chapter 2. Hahn-Banach and consequences
	2.1. Hahn-Banach, Analytic Form
	2.2. The Problem of Measure

	Chapter 3. Compact Operators, Spectral Theorem
	3.1. Compact operators and Hilbert-Schmidt operators
	3.2. Spectral theorem for compact self-adjoint operators
	3.3. Mercer's Theorem

	Chapter 4. Baire Category and its consequences
	4.1. Baire Cateogry
	4.2. Some applications
	4.3. The uniform boundedness principle
	4.4. The open mapping theorem and the closed graph theorem
	4.5. Grothendieck's theorem on closed subspaces of  L  p 
	4.6. Complementary subspaces and a counterexample

	Chapter 5. Topological vector spaces, weak topologies, and the Banach-Alaoglu theorem
	5.1. Basic Definitions and Examples
	5.2. Weak Topologies
	5.3. Normed spaces and the Banach Alaoglu Theorem

	Chapter 6. Convexity; the Kakutani-Markov Fixed Point Theorem, and Krain-Milman
	6.1. Convexity
	6.2. The Markov-Kakutani fixed point theorem
	6.3. Extreme points and the Krein-Milman Theorem

	Chapter 7. Fourier analysis and Sobolev embedding theorem
	7.1. Basic Fourier Analysis on  Rd 
	7.2. Convolution
	7.3. Weak Derivatives
	7.4. Sobolev embedding theorems

	Chapter 8. Miscellaneous
	8.1. Topology
	8.2. Measure Theory
	References


